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Abstract
This Script is basis for a seminar talk given in the seminar “Algebraic

methods in computational complexity” by Prof. Nitin Saxena in summer
term 2010. Its heavily based on a paper by Leonard S. Charlap and David
P. Robbins from 1988 [CRD]. We will give all common definitions, results
and proofs for this results on elliptic curves over finite fields.
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1 Notation and Global Definition
For a field K, n ∈ N and k ∈K we define

n ⋅ k ∶= k + . . . + k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−times

The characteristic of a field K is defined by

char(K) ∶= { 0 for Ck = ∅
min(CK) else

with Ck ∶= {p ∈ N>0 ∣ p ⋅ 1 = 0, 1 ∈K additive neutral }.

Proposition 1.1. char(K) is either 0 or prime.

Global Definition / Notation 1.2. From now an let

• K be an algebraically closed field with char(K) ∉ {2,3}

• the letters X and Y be variables

• K[X] and K[X,Y ] be the polynomial ring in one respective two variables

• K(X) and K(X,Y ) be the field of rational functions in one respective two
variables
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2 Elliptic Curves
Definition 2.1 (Vanishing Set). For f ∈K[X,Y ] we define

V (f) ∶= {(a, b) ∈K2 ∣ f(a, b) = 0}

Definition 2.2 (Elliptic Curve). For A,B ∈K the set

E ∶= EA,B ∶= V (Y 2 −X3 −AX −B) ∪ {O}

is called an elliptic curve over K if s(x) ∶= sA,B(x) ∶= x3 + Ax + B has three
distinct roots. The element O ∈ E is called identity or point at infinity and
element of ∈ E ∖ {O} finite. For a finite point P = (a, b) ∈ E we abbriviate
(a,−b) by −P . The term

∆(EA,B) ∶= −4A3 − 27B2

is called discriminant.

Remark 2.3. Sometime one defines the set EA,B as elliptic curve and call it
non-singular iff sA,B has three distinct roots. Otherwise it is called singular. We
will include non-singularity in the definition of elliptic curve because we only
want to deal with non-singular ones.

Definition 2.4 (Points of order two). Let EA,B be an elliptic curve and ω1, ω2, ω3
the three distinct roots of sA,B(x). The three points Ωi ∶= (ωi,0) ∈ EA,B are
called points of order two.

Proposition 2.5. For an arbitrary f(x) = x3+Ax+B with A,B ∈K with roots
ω1, ω2 and ω3 it holds that:

1. 0 = ω1 + ω2 + ω3

2. A = ω2ω3 + ω1ω3 + ω1ω2

3. B = −ω1ω2ω3

Proof. Since K is algebraically closed we can write

f(x) = (x − ω1)(x − ω2)(x − ω3)
= x3 + x2(−ω1 − ω2 − ω3) + x(ω2ω3 + ω1ω3 + ω1ω2) − ω1ω2ω3

comparing coefficients with x3 +Ax +B gives the result. ◻

Proposition 2.6 (Elliptic curve criterion). The set EA,B is an elliptic curve
iff ∆(EA,B) ≠ 0.

Proof. We will show that if EA,B is not an elliptic curve (which, by Def. 2.2,
means that sA,B has a double or a tripple root) iff ∆(EA,B) = 0.
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Suppose sA,B has a double root w.l.o.g. let this root be ω1. From Prop. 2.5
we get the three relations

0 = 2ω1 + ω2
A = 2ω1ω2 + ω2

1
B = −ω2

1ω2

from the first one we get ω2 = −2ω1. Plugging that into the second and third
relation yield

A = 2ω1(−2ω1) + ω2
1 = −4ω2

1 + ω2
1 = −3ω2

1
B = −ω2

1(−2ω1) = 2ω3
1

and finally we get

∆(EA,B) = −27B2 − 4A3 = −27 (2ω3
1)

2 − 4 (−3ω2
1)

3 = −108ω6
1 + 108ω6

1 = 0

Suppose sA,B has a tripple root then the preceeding proof will do it too.
Suppose ∆(EA,B) = 0:

0 = ∆(E) = −27B2 − 4A3

⇔ −27B2

8A3 = 1
2

⇔ 0 = −27B2

8A3 − 1
2

⇒ 0 = (−27B2

8A3 − 1
2)B = −27B3

8A3 − 3B
2 +B = sA,B (−3B

2A
)

So we know that x1 ∶= −3B
2A

is a root of sA,B and polynomial division yields

(x3 +Ax +B) ∶ (x + 3B
2A

) = x2 − 3B
2A

x + (A + 9B2

4A2 )

p-q-formula yield the two other roots:

x2,3 = −−
3B
2A

2 ±
√

( 3B
2A

)2

4 − (A + 9B2

4A2 )
= − 3B

4A
±
√

9B2

16A2 −A − 36B2

16A2

= − 3B
4A

±
√

−27B2

16A2 −A

Now suppose that sA,B has a double root. Then

• x2 = x3 or

• x1 = x2 or x1 = x3

The first case means that the term under the root is zero:

−27B2

16A2 −A = 0 ⇔ −27B2 − 16A3 = 0

together with −27B2 − 4A3 = 0 that implies A = B = 0.
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For the second two cases we calculate:

− 3B
2A

= − 3B
4A

±
√

−27B2

16A2 −A
− 3B

4A
= ±

√
−27B2

16A2 −A
9B2

16A2 = −27B2

16A2 −A
9B2 = −27B2 − 16A3

0 = −36B2 − 16A3

0 = −9B2 − 4A3

Which together with −27B2 − 4A3 = 0 again implies A = B = 0. ◻

Proposition 2.7. Elliptic curves are inifinite.

Proof. Suppose EA,B is finite. Since K, which is as an algebraically closed
field, infinite, we can find a ∈ K s.t. ∀b ∈ K ∶ (a, b) ∉ EA,B , hence ∄b ∈ K ∶ b2 = c
for c = a3 +Aa +B. But since K is algebraically closed, the polynomial X2 − c
needs to have a root. ◻

Definition 2.8. For a subfield k ⊆K and A,B ∈ k

E(k) ∶= {(a, b) ∈ EA,B ∣ a, b ∈ k} ∪ {O}

are called k-rational points.

Remark 2.9. When char(K) ∈ {2,3} the defining equation of an elliptic curve
can be more general:

k2 + a1hk + a3k = h3 + a2h
2 + a4h + a6

but in our case (char(K) ∉ {2,3}) it can be shown that our equation can define
every elliptic curve that can be defined by this more general seeming one. [WER,
Prop. 2.3.2]
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3 Polynomial and Rational Functions
Definition 3.1 (Polynomials on elliptic curve). For an elliptic curve E = EA,B

we denote the set of polynomials on E by

K[E] ∶= K[X,Y ]/⟨Y 2−X3−AX−B⟩

Global Definition / Notation 3.2. From now an let the small letters x and
y be the coordinat functions, defined by x(a, b) ∶= a and y(a, b) ∶= b on an elliptic
curve E, which therefore fullfill the equation y2 = s(x). With this notation, we
can also say that K[E] =K[x, y].

Remark 3.3. Passing to the quotient means that we can replace every Y 2

in a polynomial f ∈ K[X,Y ] by the term X3 + AX + B without changing the
equivalence class of f . So f can be written as f(x, y) = v(x) + yw(x) with
v,w ∈K[X] i.e. polynomials in one variable.

Notation 3.4 (Canonical form). A polynomial f ∈ K[E] is said to be written
in canonical form when we write f(x, y) = v(x) + yw(x).

Remark 3.5. The canonical form is unique.

Proof. Let f(x, y) = ˜̃v(x) + y ˜̃w(x) = ṽ(x) + yw̃(x) be two canonical forms.
We get ˜̃v(x)− ṽ(x))+y( ˜̃w(x)− w̃(x)) = 0 so after setting v(x) = ˜̃v(x)− ṽ(x) and
w(x) = ˜̃w(x) − w̃(x) it suffices to show that from v(x) + yw(x) = 0 follows that
v(x) = w(x) = 0. We calculate

0 = 0 ⋅ (v(x) − yw(x))
= (v(x) + yw(x)) ⋅ (v(x) − yw(x))
= v2(x) − y2w2(x)
= v2(x) + (−s(x))w2(x)

Since degx(s) is odd and degx(v2) and degx(w2) are even the polynomial w has
to be zero, hence the polynomial v. ◻

Definition 3.6 (Conjugate and norm). Write f ∈ K[E] in canonical form
f(x, y) = v(x)+yw(x). The conjugate of f is defined as f(x, y) ∶= v(x)−yw(x).
The norm of f is defined by Nf ∶= f ⋅ f .

Remark 3.7.

1. One can calculate Nf = v2(x)−s(x)w2(x) so Nf ∈K[X] i.e. a polynomial
in only one variable.

2. Because we easily see that fg = fg it follows that Nfg = NfNg.

Definition 3.8 (Rational functions on elliptic curve). For an elliptic curve E
we denote the set of rational functions on E by

K(E) ∶= K[E]2/∼
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with the following equivalence relation: For (f, g), (h, k) ∈K[E]2:

(f, g) ∼ (h, k) ∶⇔ f ⋅ k = g ⋅ h

(to check the equality one can write both f ⋅ k and g ⋅ h in canonical form and
compare coefficients). We denote the equivalence class of (f, g) ∈ K(E) by f

g
.

For r ∈ K(E) and a finite point P ∈ E we say r is finite at P iff there exists
a representation r = f

g
with f, g ∈ K[E] and g(P ) ≠ 0 in this case we define

r(P ) ∶= f(P )
g(P ) . If r is not finite at a point P we write r(P ) = ∞.

Remark 3.9 (Canonical form for rational functions). One can calculate for
r = f

g
∈K(E):

f

g
= fg
gg

= fg

Ng

writing (fg)(x, y) = v(x) + yw(x) in canonical form yields

f

g
= v(x) + yw(x)

Ng
= v(x)
Ng

+ yw(x)
Ng

so every rational function can be written in canonical form too.

Proposition 3.10. The rational functions that are finite at P ∈ E form a ring.

Proof. We want to show that

RP ∶= {r ∈K(E) ∣ r is finite at P}

together with the pointwise addition and multiplication is a ring. Associativity
and commativity of the addition and multiplication and distributivity is inher-
tied from the underlying field. The elements 0

1 ,
1
1 ∈ RP are the neutral elements,

which are clearly finite at P . And we can give additive inverse elements by
− f

g
= −f

g
. ◻

In the following we want to define the value of a rational function at O. In
calculus and in the situation of only one variable (i.e. f ∈ K(X)) one normaly
compares the degrees of nominator and denominator to obtain a value at∞, but
in our case we have two variables. The relation y2 = x3 +Ax +B suggests that
the degree of y should be 2

3 of the degree of x. Since we want to avoid fractional
degrees, we assign the degree 3 to y and the degree 2 to x. The classical degree
of a polynomial f ∈K[X] will be denoted by degx(f).

Definition 3.11 (Degree of a polynomial). Let f ∈K[E] and write it in canon-
ical form f(x, y) = v(x) + yw(x). The degree of f is defined by:

deg(f) ∶= max {2 ⋅ degx(v),3 + 2 ⋅ degx(w)}

Remark 3.12. Recall that degx(0) = −∞ and degx(c) = 0 ∀ c ∈K ∖ {0}

The classical degree of a polynomial and the degree of a polynomial on E
are connected via the norm:
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Lemma 3.13 (Connection of degree to classical degree). For f ∈K[E]:

deg(f) = degx(Nf)

Proof. Write f in canonical form f(x, y) = v(x) + yw(x) then Nf = v2(x) −
s(x)w2(x). Since degx(v2) and degx(w2) are even and degx(s) is odd, it follows
that

degx(Nf) = degx(v2(x) − s(x)w2(x))
= max {degx(v2),degx(s) + degx(w2)}
= max {2 ⋅ degx(v),3 + 2 ⋅ degx(w)}
= deg(f)

◻
Furthermore the degree defined at 3.11 has the fundamental property that

we expect of degrees:

Proposition 3.14 (Property of degree of polynomials). For f, g ∈K[E]:

deg(f ⋅ g) = deg(f) + deg(g)

Proof. We easily calculate:

deg(fg) Lemma 3.13= degx(Nfg)
Rem. 3.7= degx(NfNg)

property of degx= degx(Nf) + degx(Ng)
Lemma 3.13= deg(f) + deg(g)

◻
It makes no sense to talk about the ”degree of the nominator (or denomina-

tor) of a rational function on E“ since it may change when the representant is
changed:

x + 1
xy − 2

= x2 + x
x2y − 2x

but by Prop. 3.14 we get that for r = f
g
= h

k
∈ K(E) it always holds that

deg(f) − deg(g) = deg(h) − deg(k) since fk = gh. Therefore we can make the
following definition concerning the value of a rational function at O:

Definition 3.15 (Evaluating a rational function at O). Let r = f
g
∈ K(E) and

distinguish the following cases:

deg(f) < deg(g): set r(O) = 0

deg(f) > deg(g): say that r is not finte at O.

deg(f) = deg(g) and deg(f) is even: write both f and g in canonical form,
they both have a leadings terms axd and bxd (for some a, b ∈ K and d =
deg(f)

2 ) and we set r(O) = a
b
.
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deg(f) = deg(g) and deg(f) is odd: write both f and g in canonical form,
they both have a leadings terms ayxd and byxd (for some a, b ∈ K and
d = deg(f)−3

2 ) and we again set r(O) = a
b
.

Remark 3.16. It might seem natural to define the degree of a rational function
r = f

g
as deg(f)−deg(g). Then the value at O depends on the sign of this degree.

But this differes from the usual definition of degree of a rational function in
algebraic geometry. So we dont define the degree of a rational function at all.

Example 3.17. For

r(x, y) = x
3 + 2x + y + 2x4y

x + x2 + 5xy3

one can write

r(x, y) = x3 + 2x + y + 2x4y

x + x2 + 5xy(x3 +Ax +B) = (x3 + 2x) + y(1 + 2x4)
(x + x2) + y(5x4 + 5Ax2 + 5Bx)

This representant has a nominator degree of max {2 ⋅ 3,3 + 2 ⋅ 4} = 11 and a
denominator degree of max {2 ⋅ 2,3 + 2 ⋅ 4} = 11 which are both odd. So r(O) = 2

5 .

Proposition 3.18. For r, s ∈K(E) s.t. r(O) and s(O) are finite then it holds
that:

(r ⋅ s)(O) = r(O)s(O)
and

(r + s)(O) = r(O) + s(O)
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4 Zeros and Poles
Definition 4.1 (Zero and Poles). Let r ∈ K(E). We say that r has a zero at
P ∈ E if r(P ) = 0 and that it has a pole at P if r(P ) is not finite.

In the following we will define the multiplicity of a zero and a pole. It
is motivated by multiplicities of zeros in analysis of functions in one variable:
Consider the elliptic curve E = E1,0 which therefore is given by the equation

Y 2 =X3 +X

then P = (0,0) ∈ E. First notice, that P is a zero of the functions x and y. But
between this two functions, there is the relation x = y2 − x3. In the analytic
sense, when x → 0 the term x3 can be neglected so we whould say something
like ”the function x has a zero at P whose multiplicity is twice that of the zero
of y at P“. So lets formalize:

“f f&nz” ∶⇔
f is finite
and non-zero

Definition 4.2 (Uniformizer). For an elliptic curve E let P ∈ E be a point.
u ∈ K(E) with u(P ) = 0 is called a uniformizer at P if it has the following
property: ∀r ∈K(E) ∖ {0} ∶ ∃d ∈ Z, s ∈K(E) finite at P with s(P ) ≠ 0 s.t.

r = ud ⋅ s Stehen
lassenLemma 4.3 (Uniformizer in generic case). Let E be an elliptic curve and P ∈ E

be finite and not of order two. Then for P = (a, b) the function u(x, y) ∶= x − a
is a uniformizer at P .

Proof. First note that u(a, b) = 0. Now let r ∈ K(E) ∖ {0} be arbitrary. If
r has neither a zero nor a pole at P we can take d = 0 and s = r and see that u
is immaterial. So first let r(P ) = 0. We now can write r = f

g
with f(P ) = 0 and

g(P ) ≠ 0. If we can decompose f = uds as above then we can calculate

r = f
g
= u

ds

g
= ud s

g
= uds̃(x)

and we found s̃ ∶= s
g
∈K(E) as needed.

Put s0(x, y) ∶= f(x, y) and repeat the following process (beginning with i = 0)
while si(P ) = 0: write si(x, y) = vi(x) + ywi(x) in canonical form. Distinguish
the cases si(P ) = 0 and si(P ) ≠ 0:
Case si(P ) = 0: Since y(P ) = b ≠ 0 the system of linear equations

vi(a) + bwi(a) = 0
vi(a) − bwi(a) = 0

has rank 2 (which is less then the characteristic) and therefore yields
vi(a) = wi(a) = 0. Now we can write

si(x, y) = vi(x)+ywi(x) = (x−a)vi+1(x)+(x−a)ywi+1(x) = (x−a)si+1(x, y)

for si+1(x, y) = vi+1(x) + ywi+1(x) and feasible polynomials vi+1,wi+1 ∈
K[E].
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Case si(P ) ≠ 0: Multiply si by 1 = si

si
to get

si(x, y) =
Nsi(x)
si(x, y)

Now si(P ) = 0 and si(P ) ≠ 0 implies that Nsi(a) = 0 so we can write
Nsi(x) = (x − a)n(x) and with si+1(x, y) ∶= n(x)

si(x,y) (which is finite at P )
we again get

si(x, y) =
Nsi(x)
si(x, y)

= (x − a)ni+1(x)
si(x, y)

= (x − a)si+1(x, y)

If this process terminates, we end up with

f(x, y) = (x − a)isi(x, y)
where s ∶= si is finite and nonzero. With x − a = u(x, y) and d ∶= i this is the
desired decomposition: f = uds.

Since si is a rational function, not a polynomial, its not clear that this process
terminates. To show it anyhow calculate:

Nf(x) = Nuisi
(x)

= ((x − a)ivi(x))
2 − s(x) ((x − a)iwi(x))

2

= (x − a)2i (v2
i (x) − s(x)w2

i (x))
= (x − a)2iNsi(x)

so we have that degx(Nf) = 2i + degx(Nsi) and since degx(Nsi) > 0 this
implies that degx(Nf) > 2i, so 2i is bound by a finite number.

Thus if r has a zero at P we are done. If r has no zero and no pole we are
done too and in the case where r has a pole at P , 1

r
has a zero and we can take

the same u with a negative d and are done too. ◻
Lemma 4.4 (Uniformizer at points of order two). Let E be an elliptic curve
and P ∶= Ωi ∈ E be of order two, then u(x, y) ∶= y is a uniformizer at Ωi.

Proof. W.l.o.g. we can take i = 1. Then note that u(P ) = 0 and let
r ∈ K(E) ∖ {0} be arbitrary with r(P ) = 0 so it has the form r = f

g
with

f(P ) = 0 which implies v(ω1) = 0 where f(x, y) = v(x) + yw(x) is in canonical
form. Hence v has a linear factor: v(x) = (x−ω1)v1(x) for some polynomial v1.
Since the three roots of s are different we can write

f(x, y) = (x − ω1)v1(x) + yw(x)
= (x−ω1)(x−ω2)(x−ω3)v1(x)+yw1(x)

(x−ω2)(x−ω3)

= y2v1(x)+yw1(x)
(x−ω2)(x−ω3)

= y ⋅ yv1(x)+w1(x)
(x−ω2)(x−ω3)

= u(x, y) ⋅W (x, y)

where w1(x) ∶= w(x)(x − ω2)(x − ω3) and W (x, y) ∶= yv1(x)+w1(x)
(x−ω2)(x−ω3) . If W (P ) ≠ 0

we are done, otherwise we can repeat the process with W , but this is only
neccessary finitle many times since v can only contain finitly many factors. ◻
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Lemma 4.5 (Uniformizer at O). Let E be an elliptic curve then the function
u(x, y) ∶= x

y
is a uniformizer at O ∈ E.

Proof. Since deg(y) = 3 > 2 = deg(x) it follows that u(O) = 0. Now let
r = f

g
∈ K(E) ∖ {0} be arbitrary with r(O) = 0 or not finite at O, which means

that d ∶= deg(g) − deg(f) ≠ 0. We want to take s(x, y) = ( y
x
)d
r(x, y) which now

needs to be finite and non-zero at O because then we see

r(x, y) = (x
y
)

d

((y
x
)

d

r(x, y)) = ud(x, y)s(x, y)

But because

deg(ydf(x, y)) − deg(xdg(x, y))
Prop. 3.14= (deg(yd) + deg(f)) − (deg(xd) + deg(g))
Def. 3.11= 3d + deg(f) − 2d − deg(g)

= d + (deg(f) − deg(g)) = 0

which implies that s(x, y) = ydf(x,y)
xdg(x,y) is indeed finite and non-zero. ◻

Theorem 4.6 (Uniformizer theorem). Every point on an elliptic curve has a
uniformizer and the number d in Def. 4.2 does not depend on it’s choice.

Proof. Lemma 4.3, 4.4 and 4.5 together yield the existence of a uniformizer
for every point. So its only left to show that d does not depend on it’s choice:
Let u and ũ be uniformizers at P then we can write especially u = ũaq and
ũ = ubp for a, b ∈ Z and q, p ∈ K(E) are both finite and non-zero at P . After
calculating

u = ũaq = (ubp)a
q = uab(paq)

we assume ab ≠ 1, divide by u and get 1 = uab−1(paq) which, evaluated at P
leads to 1 = 0, so ab = 1 and a = b = ±1. If a = b = −1 we get

u = ũ−1q ⇔ uũ = q

which, evaluated at P yields 0 = u(P )ũ(P ) = q(P ) ≠ 0. So it holds that a = b = 1.
Now let r ∈ K(E) ∖ {0} be arbitrary, because u and ũ are uniformizers, there
exists d, d̃ ∈ Z and s, t ∈ K(E) finite an non-zero at P with r = uds and r = ũd̃t.
Now we calculate

uds = ũd̃t = (up)d̃t = ud̃(pd̃t)
which yields

ud−d̃ = p
d̃t

s

On the right side are only rational functions which are finite and non-zero at P
but if d − d̃ ≠ 0 the left side is zero at P . So d = d̃. ◻

Now that we know that uniformizers at a point always yield the same d we
can make the following definition:

12



Definition 4.7 (Order of a rational function). For an elliptic curve E let P ∈ E
be a point and u an uniformizer at P . For r ∈K(E)∖{0} with r = ud ⋅ s we call
d the order of r at P and write

ordP (r) =∶ d

The multiplicity of a zero is the order at that point and the multiplicity of a pole
is the negative of the order.

machen!
Remark 4.8. This definition of order at a zero agress with the well known
definition of order of a zero of a polynomial in one variable in the case that the
zero does not corresponde to a point of order two: Let f ∈K[X] with

f(x) = g(x) ⋅ (x − a)k

for g ∈ K[X] with g(a) ≠ 0, k ∈ N>0 and a ∈ K. We whould now say that f
has a zero of order k at a. Now see f as a polynomial f ∈ K[E] and pick a
uniformizer u at P = (a, s(a)) (which is a point on E, by assumption not of
ordet two and a root of f), for instance u(x, y) = x − a, and write f as:

f(x, y) = ud(x, y) ⋅ s(x, y) = (x − a)d ⋅ g(x)

which implies k = d = ordP (f).
However, when a = ωi (w.l.o.g. i = 1) we see that P = (a, s(a)) = (a,0) is a

zero of order 2k of f since with the uniformizer u(x, y) = y at P and the rational
function s(x, y) ∶= g(x)

(x−ω2)k(x−ω3)k we write:

f(x, y) = ud(x, y) ⋅ s(x, y)
= yd ⋅ g(x)

(x−ω2)k(x−ω3)k

= yd ⋅ (x−a)kg(x)
(x−ω1)k(x−ω2)k(x−ω3)k

= yd ⋅ (x−a)kg(x)
y2k

so (x − a)k ⋅ g(x) = f(x, y) = yd ⋅ (x−a)kg(x)
y2k which implies d = 2k.

Proposition 4.9 (Order at finite non-root). Let r ∈ K(E) and P ∈ E s.t.
r(P ) ≠ 0 and r is finite at P then:

ordP (r) = 0

Proof. Pick a uniformizer at P , take s(x, y) = r(x, y) (which is finite and
non-zero at P ) and write

r(x, y) = u0(x, y)r(x, y) = ud(x, y)s(x, y)

i.e. ordP (f) = d = 0. ◻

Proposition 4.10 (Order of polynomials at non-root). Let f ∈ K[E] and P ∈
E ∖ {O} s.t. f(P ) ≠ 0 then:

ordP (f) = 0
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Proof. Since polynomials dont have finite roots, this follows from Prop. 4.9.
◻

Proposition 4.11 (Order of polynomials at O). For f ∈K[E] ∖ {0}:

ordO(f) = −deg(f)

Proof. u(x, y) = x
y
is a uniformizer at O by Lemma 4.5. With k ∶= deg(f)

we take s(x, y) = xk

yk f(x, y). Because deg(xk ⋅ f(x, y)) Prop. 3.14= 2k + deg(f) = 3k
and deg(yk) = 3k we know that s is finite and non-zero and can write

f(x, y) = ud(x, y)s(x, y) = (x
y
)

d xk

yk
f(x, y)

which implies that d = −k = −deg(f). ◻

Proposition 4.12 (Property of order of rational functions). For r1, r2 ∈K(E)
and P ∈ E:

ordP (r1 ⋅ r2) = ordP (r1) + ordP (r2)

Proof. Let P ∈ E and pick a unformizer u at P . We now get numbers
d, d1, d2 ∈ Z and at P finite and non-zero rational functions s, s1, s2 ∈K(E) s.t.

r1 ⋅ r2 = ud ⋅ s
r1 = ud1 ⋅ s1
r2 = ud2 ⋅ s2

and can calculate

ud ⋅ s = r1 ⋅ r2 = (ud1 ⋅ s1) ⋅ (ud2 ⋅ s2) = ud1+d2 ⋅ s1 ⋅ s2

and since Thm. 4.6 it follows that

ordP (r1 ⋅ r2) = d = d1 + d2 = ordP (r1) + ordP (r2)

◻

Example 4.13. Let P = (a, b) ∈ E with b ≠ 0 i.e. P finite and not of order two.
We now want to calculate the orders of r(x, y) = x− a at all points Q ∈ E where
r(Q) is not finite or zero (at all other points it holds that ordQ(r) = 0):

Q = P or Q = P ′ ∶= (a,−b) ≠ P : Take a uniformizer u at Q, since r itself is a
uniformizer it follows that r = ud ⋅ s = r1 ⋅ 1 and ordQ(r) = d = 1.

Q = O: Take a uniformizer u(x, y) = x
y
at Q and s(x, y) = x3−ax2

y2 (note s(Q) = 1)

ud(x, y) ⋅ s(x, y) = (x
y
)
−2
s(x, y) = y

2

x2
x3 − ax2

y2 = x − a = r(x, y)

and ordQ(r) = d = −2.

14



Summing up we see that r has two simple zeros and a single double pole.

Example 4.14. Now consider r(x, y) ∶= y since u(x, y) = y is a uniformizer
at the three points of order two we have ordΩi(r) = 1. At every other finite
point r has order zero. In O we can take u(x, y) = x

y
as a uniformizer and with

s(x, y) = x3y
y3 (which is finite at O) it follows that:

ud(x, y) ⋅ s(x, y) = (x
y
)
−3
⋅ s(x, y) = y

3

x3 ⋅
x3y

y3 = y = r(x, y)

and ordO(r) = d = −3. Summing up we see that r has three simple zeros and a
single tripple pole.

Example 4.15. What about r(x, y) = x
y
? Since deg(x) = 2 < 3 = deg(y) it holds

that r(O) = 0 to obtain the order we take u(x, y) = x
y
as a uniformizer at O and

calculate for s(x, y) = 1 that

ud(x, y) ⋅ s(x, y) = (x
y
)

1
⋅ 1 = r(x, y)

and get ordO(r) = 1. Now distinguish the two cases:

B ≠ 0: The two points P± ∶= (0,±
√
B) are zeros of r. To calculate the multi-

plicity we take u(x, y) = x as a uniformizer at P±, s(x, y) ∶= 1
y
(which is

finite and nonzero for y = ±
√
B and calculate

x

y
= r(x, y) = ud(x, y)s(x, y) = xd 1

y

to optain ordP±(r) = d = 1. Furthermore r is not finite at all points of
order two Ωi: We take a uniformizer u(x, y) = y at Ωi, s(x, y) ∶= x (which
is finite and nonzero at Ωi since B ≠ 0 and Prop. 2.5 implies that ωi ≠ 0)
and calculate

x

y
= r(x, y) = ud(x, y)s(x, y) = ydx

to get ordΩi
(r) = d = −1. So summing up, we get three zeros of order one

and three poles of order one.

B = 0: An elliptic curve EA,0 is given by

y2 = x3 +Ax = x (x −
√
−A) (x +

√
−A)

so we get ω1 = 0, ω2 =
√
−A and ω3 =

√
A as the three points of order two.

First note, that Ω2 and Ω3 are poles of r, since ω2 ≠ 0 and ω3 ≠ 0. To
optain the order, we take u(x, y) = y as a uniformizer, s(x, y) = x (which
is finite and nonzero) and calculate:

x

y
= r(x, y) = ud(x, y)s(x, y) = ydx
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to optain ordΩ2(r) = ordΩ3(r) = d = −1. Furthermore we calculate

r(x, y) = x
y
= xy
y2 = xy

x (x −
√
−A) (x +

√
−A)

= y

(x −
√
−A) (x +

√
−A)

and therefore get, that (0,0) is a zero of r. To optain the order at (0,0)
we take the uniformizer u(x, y) = y and calculate

y

(x −
√
−A) (x +

√
−A)

= r(x, y) = ud(x, y)s(x, y) = yd 1
(x −

√
−A) (x +

√
−A)

with s(x, y) = 1
(x−

√
−A)(x+

√
−A)

and get ord(0,0)(r) = d = 1. So summing
up, we get two simple zeros and two simple poles.

The three examples 4.13, 4.14 and 4.15 suggest that the sum of orders over
all points is zero, which is sort of a baby Riemann-Roch Theorem. To prove
this, we need the following lemma:
Lemma 4.16 (Sum of multiplicities of roots equal degree). For f ∈K[E]:

deg(f) = ∑
P ∈E

f(P )=0

ordP (f)

Proof. Define n ∶= deg(f). By Lemma 3.13 it follows that n = degx(Nf).
We can write

(ff) (x) = Nf(x) =
n

∏
i=1

(x − ai)

with not necessarily different ais. By Rem. 4.8 it follows that dependent on
whether (ai,0) is of order two or not the factor (x − ai) has two distinct roots
on E (namely (ai,±

√
sA,B(ai))) or one double one. So, counting multiplicities,

we get that ff has exactly 2n roots on E. Since f and f have the same number
of roots on E, f has exactle n roots (again counting multiplicities), which is a
synonym for the right side of the above equation. ◻
Theorem 4.17 (Sum of orders is zero). For r ∈K(E):

∑
P ∈E

ordP (r) = 0

Proof. Since for r = h
g
∈K(E) it holds that

∑
P ∈E

ordP (r) = ∑
P ∈E

ordP (h) − ∑
P ∈E

ordP (g)

for any P ∈ E, it suffices to show the result for a polynomial f ∈K[E]. One can
calculate

∑
P ∈E∖{O}

ordP (f) Prop. 4.10= ∑
P ∈E

f(P )=0

ordP (f) Lemma 4.16= deg(f)

On the other hand by Prop. 4.11 the order of f at O is −deg(f) which yields
the result. ◻
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Lemma 4.18. Let f be a nonconstant polynomial on E, then f must have at
least two simple zeros or one double zero at finite points of E.

Proof. Since f is not constant, it contains an x or a y. Since deg(x) = 2
and deg(y) = 3 the result follows from Lemma 4.16. ◻
Lemma 4.19. If two rational function agree on an infinite number of points of
E (which is possible since E is infinite by Prop. 2.7), they are equal.

Proof. Let f, g ∈ K(E) with f(P ) = g(P ) for infinitely many P ∈ E and
define h ∶= f − g, which therefore has infinitely many zeros. Since ordP (h) > 0
for a zero P ∈ E the sum

∑
P ∈E

f(P )=0

ordP (f)

is not finite. But if h is not the zero-polynomial deg(h) is finite which whould
contradict Lemma 4.16. ◻
Lemma 4.20. A rational function without a finite pole is a polynomial.

Proof. Write an r ∈ K(E) without poles in canonical form r(x, y) =
a(x) + yb(x) with a, b ∈K(x) (Rem. 3.9).

r has no finite pole
⇒ r̄ = a − yb has no finite pole
⇒ r + r̄ = 2a has no finite pole
⇒ yb = r − a has no finite pole
⇒ (yb)2 = sb2 has no finite pole

If b has a pole, b2 has a double pole. But sb2 has no finite pole, hence s has a
double zero which contradicts the definition of elliptic curve 2.2. ◻
Definition 4.21 (Rational map). A pair of rational functions (u, v) ∈K(EA,B)
is called rational map if

v2 = u3 +Au +B
Remark 4.22. Because of the relation between u and v of a rational map
F = (u, v) it holds for every P ∈ E:

u(P ) is (not) finite⇔ v(P ) is (not) finite
When we make the convention that F (P ) = O if u and v are not finite at P we
see that F defines a map E → E by P ↦ (u(P ), v(P )).
Remark 4.23. Given a field K, form the elliptic curve E using the equation
from Def. 2.2:

Y 2 =X3 +AX +B
and consider the field of rational funtions over E, namely K(E) and use the
same equation to define an elliptic curve over that field, denoted by E(K(E)).
Since K(E) may not be algebraically closed, the points of E(K(E)) may have
coordinates in the algebraic closure of K(E). The K(E)-rational points (Def. 2.8)
of E(K(E)) are exactly the rational maps. We think of the identity of this curve,
call it OM , as the map with constant value O.

17



5 Divisors and Lines
nearly every
result from
the last
lecture only
holds for
non-zero
functions

To store the zeros and poles of a rational function (together with their degree),
we will use a formal sum. For this we recall the definition of a free abelian
group:

Definition 5.1 (Free abelian group). Let S be a set. The free abelian group
FS generated by S is the set of formal linear combinations

∑
s∈S

λ(s) ⋅ ⟨s⟩

where λ ∶ S → Z and λ(s) = 0 for almost all s ∈ S (i.e. for all s ∈ S except
of finitely many) together with the formal addition of two such formal linear
combinations.

Definition 5.2 (Divisor). For a elliptic curve E we definie the group of divisors
of E by

Div (E) ∶= FE

For a divisor ∆ = ∑P ∈E λ(P ) ⋅ ⟨P ⟩ ∈ Div (E) we define the degree of ∆ as

deg(∆) ∶= ∑
P ∈E

λ(P )

and the norm of ∆ as
∣∆∣ ∶= ∑

P ∈E∖{O}
∣λ(P )∣

Fact 5.3. A Divisor of norm 1 has the form ±⟨P ⟩ + n⟨O⟩ for n ∈ Z.

Proposition 5.4 (Property of divisor degree). For ∆1,∆2 ∈ Div (E) ∶ nicht
machen

deg(∆1 +∆2) = deg(∆1) + deg(∆2)

Proof. Note that for ∆i = ∑P ∈E λi(P )⟨P ⟩ the sum ∆1+∆2 is again a formal
sum, hence a divisor and one can calculate:

deg(∆1 +∆2) = deg (∑P ∈E λ1(P )⟨P ⟩ + ∑P ∈E λ2(P )⟨P ⟩)
finite sums= deg (∑P ∈E (λ1(P ) + λ2(P )) ⟨P ⟩)
Def. 5.2= ∑P ∈E (λ1(P ) + λ2(P ))

finite sums= ∑P ∈E λ1(P ) +∑P ∈E λ2(P )
Def. 5.2= deg(∆1) + deg(∆2)

◻

Definition 5.5 (Associated divisor). For a rational function r ∈ K(E) ∖ {0}
we define the associated divisor by

div (r) = ∑
P ∈E

ordP (r) ⋅ ⟨P ⟩
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Remark 5.6. A rational function has a finite number of zeros and poles by
Lemma 4.16 so the associated divisor is well-defined.

Fact 5.7. Constant non-zero functions have divisor 0.

The Divisor of a rational function is a possibility to write down all infor-
mation about poles and zeros of a rational functions i.e. the positions and
multiplicities.

Fact 5.8. For f ∈K[E]:

∣div (f) ∣ Def. 5.2= ∑
P ∈E∖{O}

ordP (f) Prop. 4.10= ∑
P ∈E

f(P )=0

ordP (f) Lemma 4.16= deg(f)

Definition 5.9. Let r ∈K(E), then the leading coefficient is defined by weg lassen

lc(r) ∶= [(x
y
)

ordO(r)
⋅ r] (O)

Example 5.10. Let r(x, y) = 2x2+7x
3yx+2 . With the uniformizer x

y
at O (Lemma 4.5)

and
(x
y
)
−1
r(x, y) = 2yx2 + 7yx

3yx2 + 2x
we get degO(r) = −1. Evaluating at O yields lc(r) = 2

3 which makes perfect sense
with our intuition of what a leading coefficient should be.

Proposition 5.11. If two rational functions have the same divisor, their quo-
tient is constant.

Proof. Let r1, r2 ∈ K(E) with div (r1) = div (r2), so they have the same
roots and the same poles (with same multiplicities). If div (r1) (and hence
div (r2)) has no finite poles, Lemma 4.20 implies that r1 and r2 are polynomials,
which additionally have same degree (by Lemma 4.16) and the same roots, which
implies that they are equal und the quotient is 1 which is constant. Now assume
that div (r1) has a finite pole, say P ∈ E of order m. Pick a uniformizer u at P
and write

r1

r2
= u

ms1

ums2
= s1

s2

for s1, s2 ∈K(X,Y ) finite and non-zero at P . So s1
s2

is finite and non-zero at P ,
hence is r1

r2
. Since this works for every finite pole P by Lemma 4.20 again r1

r2
is

a polynomial, which is possible only if r1 is a multiple of r2. ◻
Thus we can check if two rational functions are equal if they have the same

divisor and agree at any point on E for example O. If the two functions have a
pole at O we can compare their leading coefficients:

Lemma 5.12. Two rational functions with the same divisor and leading coef-
ficient are equal.
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Proof. Let r1, r2 ∈ K(E) be two rational function with the same divisor
and leading coefficient. We know that

0 = lc(r1) − lc(r2)
Def. 5.9= [(x

y
)

ordO(r1)
r1] (O) − [(x

y
)

ordO(r2)
r2] (O)

d∶=ordO(r1)=ordO(r2)= [(x
y
)

d
r1] (O) − [(x

y
)

d
r2] (O)

Prop. 3.18= [(x
y
)

d
r1 − (x

y
)

d
r2] (O)

= [(x
y
)

d
(r1 − r2)] (O)

Since Prop. 5.11 we have r1 = c ⋅ r2 which implies

0 = [(x
y
)

d
(c ⋅ r2 − r2)] (O)

= [(x
y
)

d
(c − 1) ⋅ r2] (O)

Prop. 3.18= (c − 1) [(x
y
)

d
⋅ r2] (O)

which implies c = 1 and therefore r1 = r2. ◻

Example 5.13. 1. Let P = (a, b), P ′ = (a,−b) ∈ E with b ≠ 0 and r(x, y) =
x − a. With Exa. 4.13 we see that

div (r) = ⟨P ⟩ + ⟨P ′⟩ − 2⟨O⟩

2. Let Pi = (ωi,0) ∈ E and r(x, y) = y. With Exa. 4.14 we see that

div (r) = ⟨P1⟩ + ⟨P2⟩ + ⟨P3⟩ − 3⟨O⟩

3. Let Q = (0,
√
B),Q′ = (0,−

√
B) ∈ EA,B and r = x

y
. With Exa. 4.15 we see

that for B ≠ 0:

div (r) = ⟨Q⟩ + ⟨Q′⟩ − ⟨P1⟩ − ⟨P2⟩ − ⟨P3⟩ + ⟨O⟩

Definition 5.14 (Principal divisors). ∆ ∈ Div (E) is called principal if:

∃r ∈K(E) ∶ ∆ = div (r)

Furthermore we say that ∆1,∆2 ∈ Div (E) are linearly equivalent or in the same
divisor class if ∆1 −∆2 is principal. We then write ∆1 ∼ ∆2.

The following Proposition and Corrolar yield that ∼ is indeed an equivalents
relation and that the set of principal divisors is a subgroup of Div (E):

Fact 5.15. For r1, r2 ∈K(E) it holds:

div (r1 ⋅ r2) = div (r1) + div (r2)
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Proof. With Prop. 4.12 it directly follows from the Def. 5.2. ◻

Corrolar 5.16. For r ∈K(E):

1. div (−r) = div (r)

2. −div (r) = div ( 1
r
)

Proof.

1. div (−r) = div ((−1) ⋅ r) Fact 5.15= div (−1) + div (r) Fact 5.7= div (r)

2. 0 Fact 5.7= div (1) = div ( r
r
) = div ( 1

r
⋅ r) Fact 5.15= div ( 1

r
) + div (r)

◻

Definition 5.17. We define the following two subgroups of Div (E):

Prin (E) ∶= {∆ ∈ Div (E) ∣ ∆ is principal }

and
Div0 (E) ∶= {∆ ∈ Div (E) ∣ deg ∆ = 0}

and the so called Picard group of E or divisor class group of E:

Pic (E) ∶= Div(E)/Prin(E)

Since Thm. 4.17 we know that Prin (E) ⊆ Div0 (E) and are able to define the
degree zero part of the Picard group:

Pic0 (E) ∶= Div0(E)/Prin(E)

The goal of this chapter will be to show that Pic0 (E) and E itself are one-
to-one.

Definition 5.18 (Line). A line on E is a polynomials of the form

l(x, y) = αx + βy + γ

with α,β, γ ∈K and α ≠ 0 or β ≠ 0. If P ∈ E is a zero of l we say l goes through
P and P is on l.

Proposition 5.19. For P1, P2 ∈ E finite with P1 ≠ P2 there is a line through
P1 and P2.

Proof. With Pi = (ai, bi) we find that

l(x, y) = {
b2−b1
a2−a1

(x − a1) − (y − b1) if a1 ≠ a2
x − a1 else

defines a line with roots P1 and P2. ◻
The following special line through an arbitrary point will be very usefull:
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Proposition 5.20. For P = (a, b) ∈ E finite and not of order two, the line

l(x, y) =m(x − a) − (y − b)

with m = 3a2+A
2b

has a double zero at P and one other finite zero. In other words:

∃Q ∈ E ∶ div (l) = 2⟨P ⟩ + ⟨Q⟩ − 3⟨O⟩

Proof. We clearly see, that l(P ) = 0, we now want to show, that the order
at P is 2: Let u(x, y) = x − a be a uniformizer at P and write:

l(x, y) = (x − a)2s(x, y)

and s(x, y) = l(x,y)
(x−a)2 has to be finite and non-zero at P . Let g(x, y) ∶= y−b

x−a
.

Polynomial division and the fact that b2 = a3 +Aa +B yield:

g(x, y) = y − b
x − a = y2 − b2

(x − a)(y + b)

= x
3 +Ax +B − b2
(x − a)(y + b)

= x
2 + ax +A + a2

y + b

g(a, b) = 3a2 +A
2b

=m

Now we calculate with 2mb = 3a2 +A:

s(x, y) = m(x − a) − (y − b)
(x − a)2

= m

x − a −
g(x, y)
x − a

= m

x − a −
x2+ax+A+a2

x−a

y + b

=
m y+b

x−a

y + b −
x + 2a + A+3a2

x−a

y + b

=
m y+b

x−a
− x − 2a − 2mb

x−a

y + b

=
m y−b

x−a
− x − 2a
y + b

= m ⋅ g(x, y) − x − 2a
y + b

Which, evaluated at P yields: s(a, b) = m2−3a
2b

which is finite and non-zero at P .
◻
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Lemma 5.21 (Divisor of Line). Let l be a line:

∣div (l) ∣ ∈ {2,3}

Proof. l(x, y) = αx + βy + γ is a polynomial of degree 2 (if β = 0) or 3 (if
β ≠ 0). Hence by Lemma 4.16, the sum of multiplicities of the zeros of l is 2 or
3, which by Fact 5.8 is ∣div (l) ∣. ◻

Proposition 5.22. Let l be a line and P1, P2, P3 ∈ E pairwise distinct points
on l, then one of the following holds:

1. div (l) = ⟨P1⟩ + ⟨P2⟩ + ⟨P3⟩ − 3⟨O⟩

2. div (l) = 2⟨P1⟩ + ⟨P2⟩ − 3⟨O⟩

3. div (l) = 3⟨P1⟩ − 3⟨O⟩

4. div (l) = ⟨P1⟩ + ⟨P2⟩ − 2⟨O⟩

5. div (l) = 2⟨P1⟩ − 2⟨O⟩

In the contrary, there is a line for each of this divisors.

Proof. First we show that all possible divisors are given by 1-5. Since
l is a polynomial, it has a pole at O and O is the only pole. By Prop. 4.11
ordO(l) = −deg(l) ∈ {−2,−3}. By Thm. 4.17 and combinatorial arguments we
get for

case ordO(l) = −3: there can only be

• three single roots (1. div (l) = ⟨P1⟩ + ⟨P2⟩ + ⟨P3⟩ − 3⟨O⟩)
• one single root and one double root (2. div (l) = 2⟨P1⟩ + ⟨P2⟩ − 3⟨O⟩)
• one tripple root (3. div (l) = 3⟨P1⟩ − 3⟨O⟩)

case ordO(l) = −2: there can only be

• two single roots (4. div (l) = ⟨P1⟩ + ⟨P2⟩ − 2⟨O⟩)
• one double root (5. div (l) = 2⟨P1⟩ − 2⟨O⟩)

Now we show that all this divisors are possible.

Case ordO(l) = −3 :

three single roots For l(x, y) = y we get:

div (l) = ⟨Ω1⟩ + ⟨Ω2⟩ + ⟨Ω3⟩ − 3⟨O⟩

one single root and one double root Prop. 5.20
one tripple root We know that P = (0,

√
B) ∈ E is a point on l(x, y) =

Ax − y +
√
B. If B ≠ 0 (which means that P is not of order two) we

can take the uniformizer u(x, y) = x and calculate TODO
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Case ordO(l) = −2 : Let P = (a, b) ∈ E be finite and l(x, y) ∶= x − a.

P not of order two Exa. 4.13 says that P and (a,−b) are two single
roots of L

P of order two W.l.o.g. P = Ω1. Pick the uniformizer u(x, y) = y at P .
Then we get for d = 2 and s(x, y) = 1

(x−ω2)(x−ω3) (which is finite and
non-zero at P ):

ud(x, y)s(x, y) = y2

(x − ω2)(x − ω3)
= x − ω1 = r(x, y)

This says, that l has a double zero at P .

◻

Notation 5.23. Whenever we write an ? as a coefficient in a divisor, the
statement in which the divisor occures is meant to be quantified with “it exists
an integral ?”. In other words: we are not interested in the special value of the
coefficient.

Theorem 5.24 (Linear Reduction). Let ∆ ∈ Div (E). Then there exists ∆̃ ∈
Div (E) with:

• ∆̃ ∼ ∆

• deg(∆̃) = deg(∆)

• ∣∆̃∣ ≤ 1

Proof. The idea is, that we can, given an arbitrary divisor ∆, add or
substract associated divisors of lines, listed in Prop. 5.22 to optain a divisor ∆1.
This operation will not change the linear equivalence class since

[∆1 = ∆ ± div (l)] ⇔ [∆1 −∆ = div (l) or ∆ −∆1 = div (l)] ⇔ [∆ ∼ ∆1]

and obtain the degree of ∆ because

deg(∆1)
Prop. 5.4= deg(∆) + deg(l) Thm. 4.17= deg(∆)

We try to do it in a way, that the norm reduces.
So write ∆ = ∑P ∈E λ(P )⟨P ⟩. We first want to reduce ∆ to a linear equivalent

divisor ∆′ of same degree, with an equal or lesser norm which can be written
as:

∆′ = n1⟨P ⟩ − n2⟨Q⟩+?⟨O⟩ (1)
where n1, n2 ∈ N>0.

Suppose ∆ is not of this form. If ∆ contains only one finite point, say ⟨P ⟩
and this point P = (ω,0) is of order two, we can subtract or add (depending on
the sign of ⟨P ⟩ in ∆) the divisor of l(x, y) ∶= x − ω which is ⟨l⟩ = 2⟨P ⟩ − 2⟨O⟩
and are finished. If P is not of order two, we can subtract or add the divisor of
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l from Prop. 5.20 through P and get a norm-reduced divisor which is in form
Equation 1 or contains at least two different points with the same sign.

So now suppose that we can take finite Q and R with Q ≠ R such that ⟨Q⟩
and ⟨R⟩ appear with nonzero coefficient of the same sign. Let l be a line through
Q and R (Prop. 5.19). This line has two or three distinct roots.

If λ(Q), λ(R) < 0: Set ∆1 ∶= ∆ + div (l)

If λ(Q), λ(R) > 0: Set ∆1 ∶= ∆ − div (l)

For ∆1 = ∑P ∈E µ(P )⟨P ⟩ we get ∣µ(Q) ∣ = ∣λ(Q) ∣−1 and ∣µ(R) ∣ = ∣λ(R) ∣−1 i.e.
the norm of the coefficients of ⟨Q⟩ and ⟨R⟩ each decreases by one.

In the case where l has three distinct roots, we changed the coefficient of
another ⟨S⟩ for a finite point S ∈ E in ∆1 by 1. So summing up, two coefficient
decrease by one and maximal one increases by one, which implies ∣∆1∣ < ∣∆∣.

We can repeat this process a finite number of times until we get the divisor
∆′, linear equivalent to and of same degree as ∆ in the form:

∆′ = n1⟨P ⟩ − n2⟨Q⟩+?⟨O⟩

where n1, n2 ∈ N>0.
Suppose n1 > 1.

P not of order two Let l be the line from 5.20 ⇒ div (l) = 2⟨P ⟩ + ⟨S⟩ − 3⟨O⟩

P = (ω,0) of order two l(x, y) = x − ω⇒ ⟨l⟩ = 2⟨P ⟩ − 2⟨O⟩

Subtraction reduces n1 and ∣∆′∣ and brings us back to the form of the start with
reduced norm. The same algorithm works for n2 and we end up with a divisor
of the form

⟨P ⟩ − ⟨Q⟩+?⟨O⟩
with P = (a, b). The line l(x, y) = x − a has divisor div (l) = ⟨P ⟩ + ⟨R⟩ − 2⟨O⟩ or
div (l) = 2⟨P ⟩ − 2⟨O⟩, subtracting brings us back to a previous case. ◻

Corrolar 5.25. For each ∆ ∈ Div0 (E) there is a unique P ∈ E such that:

∆ ∼ ⟨P ⟩ − ⟨O⟩

Proof. Thm. 5.24 tells us that ∆ is equivalent to a divisor of norm 1, i.e. a
divisor ∆1 = ±⟨P ⟩+?⟨O⟩. We can w.l.o.g. assume that the sign of ⟨P ⟩ is a plus,
because otherwise for P = (a, b), we add div (l) for l(x, y) = x − a which, since
Prop. 5.22, is

div (l) = { ⟨P ⟩ + ⟨Q⟩ − 2⟨O⟩ if P not of order two
2⟨P ⟩ − 2⟨O⟩ if P of order two

to optain ∆1 ∼ ⟨Q⟩+?⟨O⟩ and after renaming: ⟨P ⟩+?⟨O⟩ ∼ ∆1. But we are
given that ∆ ∈ Div0 (E) i.e. 0 = deg ∆ = deg ∆1 and therefore conclude that the
coefficient of ⟨O⟩ is −1 i.e. ∆ ∼ ∆1 = ⟨P ⟩ − ⟨O⟩.
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So its left to show that P is unique. Assume

⟨P ⟩ − ⟨O⟩ ∼ ∆ ∼ ⟨Q⟩ − ⟨O⟩

Then ⟨Q⟩ ∼ ∆ + ⟨O⟩ ∼ ⟨P ⟩ which means that ⟨Q⟩ − ⟨P ⟩ is principal i.e. there
is a rational function r ∈ K(E) s.t. div (r) = ⟨P ⟩ − ⟨Q⟩. Similarly as above,
as long as P ≠ Q we add and subtract lines such that we end up at a rational
function r with div (r) = ⟨S⟩ − ⟨O⟩. This shows that r has no finite poles and is
a polynomial because of Lemma 4.20. But it has only one single zero, which is
impossible because of Lemma 4.18. So we conclude P = Q. ◻

Define a map σ̄ ∶ Div0 (E) → E by σ̄(∆) = P where P is the unique point
with ∆ ∼ ⟨P ⟩ − ⟨O⟩. Since div (r) ∼ 0 it follows that σ̄(⟨r⟩) = O and we see that
σ̄ induces a map σ ∶ Pic0 (E) → E.

Corrolar 5.26. σ is a bijection.

Proof.

surjective Let P ∈ E, then σ(⟨P ⟩ − ⟨O⟩) = P .

injective Let P,Q ∈ E, ∆ ∈ Pic0 (E) s.t. σ(∆) = P and σ(∆) = Q. Since
Cor. 5.25 we know that ∃!S ∈ E s.t. ∆ ∼ ⟨S⟩ − ⟨O⟩, which then implies
P = S = Q.

◻
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