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Abstract
This is the handout for a seminar talk on 09. and 12. July 2012 given in
the seminar on “Algorithms in Real Algebraic Geometry” at the Math-
ematical Institute of the University Bonn that was organized by Prof.
Nitin Saxena. In my talk I describe a well-known algorithm for deciding
quadratic form equivalence over different interesting fields by using Witt’s
theorem. Here “form equivalence” means that two forms are equivalent if
and only if there exists an invertible linear transformation on the variables
such that one of the forms becomes equal to the other. The desciription
of the algorithm to decide this problem was also given in [AS06b] and the
proof of Witt’s theorem is based on the proof from [Ser73].
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1 Introduction
1.1 Basic Definitions
Definition 1.1 (Polynomial Equivalence). Let K/F be a field extension. Two
polynomials f, g ∈ F [x1, . . . , xn] are said to be equivalent over K if there exists
an invertible linear transformation τ sending each xi to a lineare combination
of the x1, . . . , xn with coefficients in K:

f(τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

We then write f ∼K g. If K = F, we simply write f ∼ g and say that f and g
are equivalent.

Remark 1.2. An invertible linear transformation τ on the variables of a poly-
nomial f ∈ F [x1, . . . , xn] can also be expressed by a matrix A ∈ Gln (K) acting
on F [x1, . . . , xn]. So abbusing notation a little bit, we can say that

f ∼K g ⇔ ∃A ∈ Gln (K) : f ◦A = g.

In this case, we say that f is equivalent to g via A.

Fact 1.3. The equivalence of polynomials is indeed an equivalence relation.

Proof. For all f, g, h ∈ F [x1, . . . , xn]:

• Reflexivity: f ∼K f via the identity matrix in Gln (K).

• Symmetry: If f ∼K g via A ∈ Gln (K) then g ∼K f via A−1.

• Transitivity: If f ∼K g via A ∈ Gln (K) and g ∼K h via B ∈ Gln (K),
then f ∼K h via B ·A ∈ Gln (K).

Example 1.4. Let f(x, y) = x2 + y2 and g(x, y) = 2x2 + 2y2 be polynomials
over Q. The map

τ :
{
x 7→ x+ y
y 7→ x− y

is an invertible linear transformation as in the above definition 1.1 and τ ◦f = g,
so f ∼ g over rationals. We could also say, that(

1 1
1 −1

)
∈ Gln (Q)

is invertible and calculate

f

((
1 1
1 −1

)(
x
y

))
= f

(
x+ y
x− y

)
= (x+ y)2 + (x− y)2 = 2x2 + 2y2 = g(x, y)

Example 1.5. Consider f, g ∈ Q [x] with f(x) = x2 and g(x) = 2x2. Then f
and g are not equivalent over Q but they are equivalent over R via τ : x 7→

√
2x.
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Notation 1.6. Denote by [N] the set of multi-indices and for d ∈ N by

[N]=d := {α ∈ Nn | |α|1 = d }

the set of multi-indices of norm d and

[N]≤d := {α ∈ Nn | |α|1 ≤ d } .

We denote the set of natural numbers from 0 respectively 1 to n ∈ N by

[n]0 := [0, n] ∩ Z respectively [n] := [1, n] ∩ Z.

Definition 1.7 (Total Degree of a Polynomial). Let f ∈ F [x1, . . . , xn] be a
polynomial and write f(x1, . . . , xn) =

∑
α∈[N] aαx

α where only finitely many
aα 6= 0, then the (total) degree of f is given by

deg(f) = sup { |α| | aα 6= 0 } .

Remark 1.8. Note that non-zero constants (elements of F∗) have degree 0 and,
since sup { ∅ } := −∞, we have deg (0) = −∞.

Fact 1.9. Equivalent polynomials have the same degree.

Proof. Let f and g be equivalent polynomials via A ∈ Gln (K). So A replaces
every variable by a linear combination of of xi which does not change the degree.

Definition 1.10. For d ∈ N>0 a polynomial f ∈ F [x1, . . . , xn] of the form

f(x1, . . . , xn) =
∑

α∈[N]=d

aαx
α

is called homogeneous polynomial of degree d or form of degree d. Fur-
thermore define:

• F [x1, . . . , xn] =d the forms of degree d.

• F [x1, . . . , xn]≤d the forms of degree at most d.

Definition 1.11 (Polynomials as input). We assume every polynomial f ∈
F [x1, . . . , xn] with total degree d to be given in expanded form:

f(x1, . . . , xn) =
∑

0≤i1+...+in≤d
ai1,...,inx

i1
1 · · · · · xinn

with ai1,...,in ∈ F. This can also be written in a little bit more elegant way:

f(x1, . . . , xn) =
∑

α∈[N]≤d

aαx
α

where x = (x1, . . . , xn) and aα ∈ F.
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Definition 1.12. We define the following decision problems

PolyEquivd,F :=
{

(f, g) ∈ F [x1, . . . , xn]2
∣∣∣ n ∈ N,deg(f) = d = deg(g), f ∼ g

}
FormEquivd,F :=

{
(f, g) ∈

(
F [x1, . . . , xn] =d)2

∣∣∣ n ∈ N, f ∼ g
}

and for shortage of notation also

QuadraticPolyEquivF := PolyEquiv2,F

QuadraticFormEquivF := FormEquiv2,F

CubicPolyEquivF := PolyEquiv3,F

CubicFormEquivF := FormEquiv3,F

1.2 Connection to other problems
In this chapter I want to present some results about the complexity of the
previously defined form equivalence problem and it’s special cases – all without
proofs. Since the algebra isomorphism problem plays a major role, we first
define how we want to give an F-algebra as input to an algorithm.

Definition 1.13 (Commutative F-algebra). A commutative ring containing a
field F is called commutative F-algebras.

Definition 1.14 (F-algebras as input). Let F be a field and A be a finitely
generated commutative F-algebra with additive basis b1, . . . , bn ∈ A (such an
algebra is also called a commutative affine algebra). We now want to capture
the multiplicative structure of the algebra and therefore write every product of
base elements as a linear combination of all base elements:

∀i, j, k ∈ [n] ∃aijk ∈ F : bibj =
n∑
k=1

aijkbk.

The aijk are called structure coefficients.

Fact 1.15. Let A be an F-algebra with additive basis { bi }i∈[n] and structure
coefficients { aijk }i,j,k∈[n] then:

A ∼= F [x1, . . . , xn]
/(

xixj −
n∑
k=1

aijkxk

)
i,j∈[n]

.

To specify an isomorphism ψ : A → B it is sufficient to write for every i the
element ψ(bi) as linear combination of b1, . . . , bn in B.

Definition 1.16.

CommAlgIsoF := {(A,B) | A,B commutative F-algebras with
basis b1, . . . , bn and A ∼= B}
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Theorem 1.17.

(i). CommAlgIsoFq
∈ NP ∩ coAM for a prime power q

(ii). CommAlgIsoR ∈ EEXP

(iii). CommAlgIsoF ∈ PSPACE if F = F

Proof. A proof can be found in

(i). [KS05, Theorem 3.1.]

(ii). [DH88]

(iii). [Bro06]

Theorem 1.18. For every field F one has:

(i). GraphIso ≤pT CommAlgIsoF

(ii). GraphIso ≤pT CubicFormEquivF

Proof. A proof can be found in

(i). [KS05, Theorem 3.2.] or [AS05, Theorem 2] or [AS06b, Lemma 6.13].

(ii). [AS05, Theorem 4]

Theorem 1.19.

(i). PolyEquivd,Fq
∈ NP ∩ coAM for a prime power q

(ii). PolyEquivd,R ∈ EEXP

(iii). PolyEquivd,F ∈ PSPACE if F = F

Proof. The proof is given in [AS06b, Theorem 2.1].

Theorem 1.20.

(i). CommAlgIsoF ≤pT CubicFormEquivF

(ii). CommAlgIsoF ≤pT CubicPolyEquivF

(iii). FormEquivd,F ≤pT CommAlgIsoF (if F contains d-th roots)

Proof. A proof can be found in

(i). [AS06a, Theorem 4.1] or [AS06b, Theorem 3.10]

(ii). [AS06b, Theorem 2.7]

(iii). [AS06b, Theorem 2.3]
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2 Witt’s theorem
The goal of this chapter is to understand an algorithm to decide quadratic form
equivalence. This case is significantly easier than equivalences of higher degrees
because quadratic modules are well studied and have a lot of structure. We will
define a quadratic module associated to a quadratic form and the associated
modules to two quadratic forms will turn out to be isomorphism if and only if
the two forms are equivalence. In the end we will prove Witt’s theorem that
gives us two usefull corollaries:

(i). Every quadratic form is equivalent to a form
∑n
k=1 akx

2
k.

(ii). We have a cancelation rule for quadratic forms (the ⊕̂ will be defined on
the way):

f ⊕̂h ∼ g ⊕̂h ⇒ f ∼ g

2.1 Definitions
Definition 2.1 (The category of quadratic modules). Let V be a module over
a commutative ring R. A function Q : V → R is called a quadratic form on V
if:

(i). ∀r ∈ R, x ∈ V : Q(ax) = a2Q(x).

(ii). ΘQ : V × V → F, (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is bilinear.

The pair (V,Q) is called quadratic module. The set of all quadratic forms
on V is denoted by Quad (V ). Let (V ′, Q′) be another quadratic module. A
linear map f : V → V ′ is called morphism of quadratic modules or metric
morphism if Q′ ◦ f = Q, which means the following diagram commutes:

V V ′

R

Q

f

Q′

We write f : (V,Q)→ (V ′, Q′).

Remark 2.2. A form φ : V 2 → R is called bilinear, if

(i). ∀a, b, c, d ∈ V : φ(a+ b, c+ d) = φ(a, c) + φ(a, d) + φ(b, c) + φ(b, d)

(ii). ∀λ ∈ R, a, b ∈ V : φ(λa, b) = λφ(a, b) = φ(a, λb)

In our situation, the ring R will always be a field F with char (F) 6= 2 and
the module V will therefore be a vectorspace. We will furthermore assume that
V is finite-dimensional.

Definition 2.3. Let (V,Q) be a quadratic vectorspace, define ∀x, y ∈ V :

x.y = ΘQ(x, y)
2 .

Definition/Proposition 2.4. Let (V,Q) be a quadratic vectorspace. Then:
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(i). ∀x ∈ V : Q(x) = x.x and therefore there is a bijective correspondence
between quadratic forms and symmetric bilinear forms.

(ii). (x, y) 7→ x.y is a symmetric bilinear form on V called the scalar product
associated to Q.

(iii). For a metric morphism f : (V,Q) → (V ′, Q′) it holds that ∀x, y ∈ V :
f(x).f(y) = x.y.

Proof.

(i). ∀x ∈ V : x.x = Q(2x)−Q(x)−Q(x)
2 = 4Q(x)−Q(x)−Q(x)

2 = Q(x).

(ii). Symmetry is obvious and linearity follows from the properties of Q.

(iii). This directly follows from Q′ ◦ f = Q.

Remark 2.5. Even though (x, y) 7→ x.y is called scalar product, there is no such
thing as positive-definiteness since F does not need to be ordered.

Notation 2.6. For a basis B = { b1, . . . , bn } of V and x ∈ V one can of course
write x =

∑n
i=1 xibi where ∀i ∈ [n] : xi ∈ F. We denote by x the vector of

coefficients (x1, . . . , xn)T with respect to a given basis B.

Definition 2.7 (Matrix associated to a quadratic form). Let (V,Q) be a quadratic
vectorspace and B = { b1, . . . , bn } be a basis of V . The matrix of Q with re-
spect to B is defined by (aij)ij where aij := bi.bj .

Remark 2.8. The matrix associated to Q is symmetric and we have:

Q(x) 2.4(i)= x.x =
(

n∑
i=1

xibi

)
.

 n∑
j=1

xjbj

 =
n∑

i,j=1
xixj(bi.bj) =

n∑
i,j=1

aijxixj .

Hence Q is a quadratic form in the variables x1, . . . , xn in the usual sense.
Furthermore we can calculate for the coefficient vectors:

x.y = 1
2(Q (x+ y)−Q (x)−Q (y))

= 1
2

(
(x+ y)T A (x+ y)− xTAx− yTAy

)
= 1

2
(
xTAx+ xTAy + yTAx+ yTAy − xTAx− yTAy

)
= 1

2
(
xTAy + yTAx

)
= xTAy

Definition 2.9. We define a subgroup of the multiplicative group of F by

F∗n := {xn | x ∈ F∗ } .
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Definition 2.10 (Discriminant of a quadratic form). Let (V,Q) be a quadratic
vectorspace and let A be a matrix associated to Q. Denote the projection

F→ F
/
F∗2

by π, then define the discrimanent of Q by disc (Q) := π (det (A)).

Remark 2.11. If one changes the basis that defined A by X ∈ Gln (F), the
matrix A′ with respect to this new basis is X ·A ·Xt, which means

det (A′) = det (A) det (X)2

and therefore det (A) is determined up to multiplication by a square in F∗, hence
disc (Q) is independent of the choice of a basis.

2.2 Orthogonality
Definition/Proposition 2.12 (Orthogonality). Two elements x and y of V
are called orthogonal if x.y = 0. For a subset H ⊆ V , we define the orthogo-
nal complement of H by

H⊥ := {x ∈ V | ∀y ∈ H : x.y = 0 } .

Two subspaces U,W ⊆ V are called orthogonal if U ⊆ W⊥ i.e. if x ∈ U, y ∈
W implies x.y = 0. The orthogonal complement V ⊥ of the whole space V is
called radical or kernel of V and is denoted by rad (V ). Its codimension i.e.
dim (V ) − dim (rad (V )) is called rank of Q. If rad (V ) = {0}, we say that
(V,Q) is nondegenerate (we may leave out V or Q if it is clear from the
context and just say that V is nondegenerate or Q is nondegenerate).

Fact 2.13.

(i). The orthogonal complement H⊥ of any set H ⊆ V is a subspace of V .

(ii). H ⊆ H⊥⊥.

(iii). Q is nondegenerate if and only if disc (Q) 6= 0.

Proof.

(i). This is clear by definition/proposition 2.4(ii).

(ii). Let x ∈ H, to show that x ∈ H⊥⊥, we have to show that ∀y ∈ H⊥ we
have that x.y = 0. So let y ∈ H⊥ be arbitrary, by definition of H⊥, we
have that ∀z ∈ H : y.z = 0, especially for z = x.

(iii). Choose a basis B and check

disc (Q) = 0⇔ det (A) = 0
⇔ ∃x ∈ V \ {0} : Ax = 0
∗⇔ ∃x ∈ V \ {0} : ∀y ∈ V : yTAx = 0
⇔ Q is not nondegenerate
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The implication ”‘⇐”’ at ∗ can be seen like this:

∃x ∈ V \ {0} : ∀y ∈ V : yTAx = 0

⇒∃x ∈ V \ {0} : ∀j ∈ [n] :
(
b
T
)
j
Ax = 0

And hence ∀j ∈ [n] the j-th coordinate of Ax, namely
(
b
T
)
j
Ax is zero,

hence Ax is zero.

Example 2.14. Being nondegenerate is not passed on to subspaces: Let for
example Q : R3 → R be given by

Q(x1, x2, x3) = x2
1 + x2

3 + 2x2x3 + 2x1x3

= (x1, x2, x3)

1 0 1
0 0 1
1 1 1

x1
x2
x3


Since disc (Q) = −1 we get that the quadratic space (R3, Q) is nondegenerate.
But the subspace

U :=


x1
x2
0

 ∈ R3


with the restriction Q

∣∣∣
U

is not nondegenerate since Q(x1, x2, 0) = x2
1 and there-

fore x1
x2
0

 .

0
1
0

 = 0 ∀

x1
x2
0

 ∈ U
which means that (0, 1, 0)T is orthogonal to every other element of U .

Definition 2.15. Let U ⊆ V be subspace and denote the dual space by

U∗ := {φ : U → F | φ is linear } .

Furthermore define
qU : V −→ U∗

x 7−→ (y ∈ U 7→ x.y)

Fact 2.16.

(i). ker (qU ) = U⊥

(ii). Q is nondegenerate if and only if qV : V → V ∗ is an isomorphism.

Proof.

(i). For x ∈ U with qU (x) = 0 ∈ V ∗ we have

∀y ∈ V : 0 = (qU (x)) (y) = x.y

which exactly defines U⊥.
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(ii). ker (qV ) (i)= V ⊥ which is by definition {0} if and only if Q is nondegenerate,
therefore qV is injective, but since V ∼= V ∗ it is also surjective.

Definition 2.17. Let U1, . . . , Um ⊆ V be subspaces. We say that V is the
orthogonal direct sum of the Ui if they are pairwise orthogonal and if V is
the direct sum of them, we then write:

V = U1 ⊕̂ . . . ⊕̂Um.

Remark 2.18. Let V = U1 ⊕̂ . . . ⊕̂Um and decompose x ∈ V into it’s compo-
nents xi ∈ Ui, then

Q(x) = Q1(x1) + . . .+Qm(xm) (2.1)

where Qi := Q
∣∣∣
Ui

are the restrictions of Q to Ui. Conversely if (Ui, Qi) for
i =∈ [m] are quadratic modules, we can define a quadratic module (V,Q) where
V =

⊕m
i=1 Ui by eq. (2.1) above and have:

V = U1 ⊕̂ . . . ⊕̂Um.

Example 2.19. If U ⊆ V is a supplementary subspace of rad (V ) (i.e. V =
U ⊕ rad (V )) then

V = U ⊕̂ rad (V ) .

Proposition 2.20. Let (V,Q) be nondegenerate. Then the following statements
hold:

(i). All metric morphisms of V into a quadratic module (V ′, Q′) are injective.

(ii). For all subspaces U ⊆ V , we have:

(a) dim (U) + dim
(
U⊥
)

= dim (V )
(b) U⊥⊥ = U

(c) rad (U) = rad
(
U⊥
)

= U ∩ U⊥

The quadratic module
(
U,Q

∣∣∣
U

)
is nondegenerate if and only if

(
U⊥, Q

∣∣∣
U⊥

)
is nondegenerate in which case V = U ⊕̂U⊥.

(iii). If V is the orthogonal direct sum of two subspaces, they are nondegenerate
and each of them is orthogonal to the other.

Proof.

(i). If f : V → V ′ is a metric morphism and if f(x) = 0, we have

x.y = f(x).f(y) = 0 ∀y ∈ V

this implies x = 0 because (V,Q) is nondegenerate.
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(ii). Let U ⊆ V be a subspace. Note that qU = qV ◦πU∗ where πU∗ : V ∗ → U∗

is the canonical projection. Since qV is bijective (by fact 2.16(i)), qU is
surjective, thus with the canonical injection ι : U⊥ → V the following
sequence is exact:

{0} U⊥ V U∗ {0}ι qU

hence

dim (V ) = dim (U∗) + dim
(
U⊥
)

= dim (U) + dim
(
U⊥
)
.

Taking U⊥ as the subspace in this argument we also get

dim (V ) = dim
(
U⊥
)

+ dim
(
U⊥⊥

)
which implies that

dim (U) + dim
(
U⊥
)

= dim (V ) = dim
(
U⊥
)

+ dim
(
U⊥⊥

)
giving that dim (U) = dim

(
U⊥⊥

)
. Fact 2.13(ii) now implies U = U⊥⊥.

By the definitions:

rad (U) := {x ∈ U | ∀ y ∈ U : x.y = 0 }
U⊥ := {x ∈ V | ∀ y ∈ U : x.y = 0 }

we clearly get U ∩ U⊥ = rad (U). Applying this formular to U⊥, we get
U⊥ ∩ U⊥⊥ = rad

(
U⊥
)

and calculate

rad
(
U⊥
)

= U⊥ ∩ U⊥⊥ (ii)b= U⊥ ∩ U = rad (U) .

(iii). This statement is finally trivial, because if V = U ⊕̂W is nondegenerate,
none of U and W can be not nondegenerate and the orthogonality directly
follows from the defintion of the orthogonal direct sum.

Example 2.21. Example 2.14 does not yield a counter example to proposi-
tion 2.20(iii) since although with

U :=


x1
x2
0

 ∈ R3

 , W :=


 0

0
y3

 ∈ R3


we have that R3 = U ⊕W we also calculatex1

x2
0

 .

 0
0
y3

 =
(
x1 x2 0

)1 0 1
0 0 1
1 1 1

 0
0
y3

 = (x1 + x2)y3

which gives us that for example (1, 0, 0)T ∈ U and (0, 0, 1)T ∈ W are not
orthogonal, which means that R3 is not the orthogonal sum of U and W .
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2.3 Isotropic vectors
Definition 2.22. An element x ∈ V is called isotropic if Q(x) = 0. A subspace
U ⊆ V is called isotropic if all its elements are isotropic.

Example 2.23. A nondegenerate space can contain isotropic vectors: Consider
the quadratic form Q(x, y) = 2xy over R2. The associated matrix is

A =
(

0 1
1 0

)
.

One has Q(1, 0) = 0 which means that (1, 0)T is isotropic but det (A) = −1 6= 0
which means that (R2, Q) is nondegenerate.

Fact 2.24.
U isotropic ⇔ U ⊆ U⊥ ⇔ Q

∣∣∣
U

= 0

Definition 2.25. A quadratic module having a basis formed of two isotropic
elements x, y ∈ V such that x.y 6= 0 is called hyperbolic plane.

Remark 2.26. Without loss of generality, we can assume that x.y = 1: Just
multiply y by 1

x.y . Then the matrix of the quadratic form with respect to the

basis {x, y } is
(

0 1
1 0

)
. The discriminant then is disc (Q) = −1, in particular

Q is nondegenerate.

Proposition 2.27. Let x ∈ V \{0} be isotropic and Q be nondegenerate. Then
there exists a subspace U ⊆ V which contains x and is a hyperbolic plane.

Proof. Since V is nondegenerate, there exists z ∈ V such that x.z = 1. The
element y = 2z − (z.z)x is isotropic and x.y = 2. The subpsace U = 〈x, y〉 has
the desired property.

Corollary 2.28. If (V,Q) is nondegenerate and contains a nonzero isotropic
element, we have Q(V ) = F.

Proof. We have to show that ∀a ∈ F ∃v ∈ V such that Q(v) = a. Without loss
of generalty, we may assume that V is a hyperbolic plane: Let x ∈ V be the
nonzero isotropic element, then proposition 2.27 we get y ∈ V such that 〈x, y〉
is a hyperbolic plane. Furthermore we can assume that x and y are isotropic
and x.y = 1 (see remark 2.26). Now for a ∈ F one calculates

(
1 a

2
)(0 1

1 0

)(
1
a
2

)
=
(
1 a

2
)(a

2
1

)
= a

and therefore get we get a = Q
(
x+ a

2y
)
.

2.4 Orthogonal basis
Definition 2.29. A Basis { b1, . . . , bn } is called orthogonal if its elements are
pairwise orthogonal i.e.

V = 〈b1〉 ⊕̂ . . . ⊕̂ 〈bn〉 .
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Remark 2.30. This is equivalent to saying that the matrix associated to Q with
respect to the basis B = { b1, . . . , bn } is a diagonal matrix with diagonal entries
a1, . . . , an ∈ F∗: 

a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 .

If x = (x1, . . . , xn)T is the coordinate vector of x ∈ V with respect to the basis
B, we have that Q(x) = a1x

2
1 + . . .+ anx

2
n.

Fact 2.31. Let (V,Q) be a nondegenreate quadratic space with an orthogonal
basis { b1, . . . , bn }, then ∀i ∈ [n] : (bi.bi) 6= 0.

Proof. Write
V = 〈b1〉 ⊕̂ · · · ⊕̂ 〈bn〉 .

Now proposition 2.20(iii) gives that each 〈bi〉 is nondegenerate which makes it
impossible for bi to be isotropic.

Theorem 2.32. Every quadratic module has an orthogonal basis.

Proof. We prove this by induction on the dimension n := dim (V ). The case
n = 0 is trivial. Now let n be arbitrary. If V is isotropic, all bases of V are
orthogonal. Otherwise, choose an element b ∈ V such that b.b 6= 0. Now the
orthogonal complement U := { b }⊥ is a hyperplane (i.e. has dimension n − 1)
and since b /∈ U , one has V = 〈b〉 ⊕̂U . By induction hypothesis U has an
orthogonal basis B and { b } ∪B is an orthogonal basis.

Definition 2.33. Two orthogonal bases

B = { b1, . . . , bn } and C = { c1, . . . , cn }

of V are called contiguous if they have an element in common (i.e. if there
exist i and j with bi = cj). A sequence of basis B0, B1, . . . , Bm is called a chain
contigouously relating B and C if

• Bi ⊆ V is an orthogonal basis for 1 ≤ i ≤ m,

• B0 = B and Bm = C,

• Bi and Bi+1 are contiguous for 0 ≤ i < m.

Lemma 2.34. Let (V,Q) be a nondegenerate quadratic module, a, b ∈ V \ {0}
and define P := 〈a, b〉. Then

(a.a)(b.b) 6= (a.b)2 ⇔ dim (P ) = 2 and P is nondegenerate.

Proof. We will prove the equivalent statement

(a.a)(b.b) = (a.b)2 ⇔ dim (P ) < 2 or P is degenerate.
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“⇐”: Asume that dim (P ) < 2, then there exists λ ∈ F with a = λb implying:

(a.a)(b.b)− (a.b)2 = (λb.λb)(b.b)− (λb.b)2 = λ2(b.b)2 − λ2(b.b)2 = 0.

Now if P is degenerate, then there exists v = λa+µb ∈ P \{0} with the property
that ∀w ∈ P : (v.w) = 0. Now calculate

0 = (v.a) = λ(a.a) + µ(b.a) ⇔ −µ(b.a) = λ(a.a) (2.2)
0 = (v.b) = λ(a.b) + µ(b.b) ⇔ −λ(a.b) = µ(b.b). (2.3)

Now since v 6= 0 at least one of µ and λ is not zero. If λ 6= 0 we get by (2.3)
that (a.b) = −µλ (b.b) which, plugged into (2.2) yields

µ
µ

λ
(b.b) = λ(a.a) ⇔ µ2

λ2 (b.b) = (a.a)

putting this all together we get

(a.a)(b.b)− (a.b)2 = µ2

λ2 (b.b)(b.b)−
(
−µ
λ

(b.b)
)2

= 0.

The same works for µ 6= 0 because (2.2) and (2.3) are symmetric in a and b.

“⇒”: Define the element

c := (b.b)a− (a.b)b ∈ P

and observe that

c.a = (b.b)(a.a)− (a.b)(b.a) = 0 by assumption
c.b = (b.b)(a.b)− (a.b)(b.b) = 0

So c ∈ rad (P ). So c is zero or P is degenerate (in the latter case, we are done).
So let c = 0 we get that (b.b)a − (a.b) = 0 which is a linear combination of 0
in a and b (which generate P ). So either is dim (P ) < 2 (in which case we are
done again) or (b.b) = 0 and (a.b) = 0, which implies that b ∈ rad (P ). Now if
b = 0, we again get that dim (P ) < 2 and if b 6= 0, P is degenerate.

Lemma 2.35 (Gram-Schmidt). Let (V,Q) be nondegenerate, a, b ∈ V be lin-
early independent and a be nonisotropic. Then there exists c ∈ V such that

〈a, b〉 = 〈a〉 ⊕̂ 〈c〉

Proof. Set p := a.b
a.aa, c := b− p and calculate:

a.c = a.(b− p) = a.b− a.p = a.b− a.a a.b
a.a

= 0.

Let λ, µ ∈ F and calculate

0 = λa+ µc = λa+ µb− µp = λa+ µb− µ a.b
a.a

a =
(
λ− µ a.b

a.a

)
a+ µb

now since a and b are linearly independent, we get µ = 0 and λ− µ a.ba.a = 0 i.e.
λ = 0, meaning that a and c are linearly independent too.

14



Theorem 2.36. Let (V,Q) be a nondegenerate quadratic module of dimension
dim (V ) ≥ 3 with two orthogonal basis B and C then there exists a chain con-
tigously relating B and C.

Proof. Define µi := (b1.b1)(ci.ci)− (b1.ci)2 and distinguish the cases where µi =
0 for i ∈ { 1, 2 } and where µi 6= 0.

Case 1. (µi 6= 0 for i = 1, 2) By assumption and lemma 2.34 (applied to b1
and ci) P := 〈b1, ci〉 has dimension 2 and is nondegenerate. Since B and C are
orthogonal basis by fact 2.31 we know that b1 and ci are both nonisotropic and
lemma 2.35 therefore yields x, y ∈ V with

P = 〈b1〉 ⊕̂ 〈x〉 and P = 〈ci〉 ⊕̂ 〈y〉

Additionally by proposition 2.20 we get, that P⊥ is nondegenerate too. And
ultimately V = P ⊕̂P⊥. Now let { d3, . . . dn } be an orthogonal basis of P⊥
(which exists because of theorem 2.32). Then the sequence

B , { b1, x, d3, . . . , dn } , { ci, y, d3, . . . , dn } , C

contigouously relates B and C.

Case 2. (µi = 0 for i = 1, 2) We first prove the following claim:

Claim 2.36.1. ∃λ ∈ F : eλ := c1 + λc2 is nonisotropic and 〈eλ, b1〉 is a nonde-
generate plane.

Proof. For eλ being nonisotropic, we need to ensure that 0 6= eλ.eλ. So calculate

(eλ.eλ) = (c1.c1) + 2λ(c1.c2) + λ2(c2.c2) = (c1.c1) + λ2(c2.c2)

since C is orthogonal. We know that (ci, ci) 6= 0 (fact 2.31) and therefore have
that eλ is nonisotropic if and only if λ2 6= − c1.c1

c2.c2
.

Applying lemma 2.34 to eλ and b1 yields that it is necessary and sufficient for
them to generate a nondegenerate plane that

(b1.b1)(eλ.eλ)− (b1.eλ)2 6= 0

So calculate

(b1.b1)(eλ.eλ) = (b1.b1)((c1.c1) + λ2(c2.c2))
= (b1.b1)(c1.c1) + λ2(b1.b1)(c2.c2)
= (b1.c1)2 + λ2(b1.c2)2 since µi = 0

and

(b1.eλ)2 = (b1.c1 + λ(b1.c2))2

= (b1.c1)2 + 2λ(b1.c1)(b1.c2) + λ2(b1.c2)2

leading to

0 6= (b1.b1)(eλ.eλ)− (b1.eλ)2 = −2λ(b1.c1)(b1.c2)

15



By fact 2.31 and µi = 0, we get that (b1.ci)2 6= 0 and tehrefore that λ 6= 0.
Summarized, eλ verifies the conditions of claim 2.36.1 if and only if λ2 6= − c1.c1

c2.c2
and λ 6= 0. This rules out only 3 values for λ ∈ F, so if F has at least 4 elements,
we are done. So we are left to show the statement for the case F = F3 (F = F2
is excluded, since char (F) 6= 2): In F3, all nonzero squares are 1, so µi = 0 is
equivalent to (b1.b1)(ci.ci) = 1. Now calculate

λ2 6= −c1.c1

c2.c2
= − (b1.b1)(c1.c1)

(b1.b1)(c2.c2) = −1

and see that λ = 1 realizes the conditions λ2 6= −1 and λ 6= 0 which finishes the
proof of claim 2.36.1.

Let eλ ∈ F be such as in claim 2.36.1 and since eλ is not isotropic there is y ∈ F
such that { eλ, y } is an orthogonal basis of 〈eλ, y〉. Finish

Proof: the-
orem for
contigous
bases

Finish
Proof: the-
orem for
contigous
bases2.5 Proof of Witt’s Theorem

Let (V,Q) and (V ′, Q′) be two nondegenerate quadratic spaces, U ⊆ V a sub-
space of V and s : U → V ′ be an injective metric morphism in this section. The
goal is to extend s to a subspace larger than U and if possible to all of V .

Proposition 2.37. If U is degenerate, there exists U1 ⊆ V containing U with

dim (U1) = dim (U) + 1

extending s to an injective metric morphism s1 : U1 ↪→ V ′ with s1

∣∣∣
U

= s.

Proof. Let x ∈ rad (U) \ {0} and g : U → F be linear such that g(x) = 1.
Since U is nondegenerate, fact 2.16(ii) implies that qV is an isomorphism and
therefore surjective i.e. exists y ∈ V such that qV (y)

∣∣∣
U

= g or in other words
for all u ∈ U : g(u) = u.y. Since x ∈ rad (U) and y.x = 1 6= 0 we get that y /∈ U
and therefore that U1 := U ⊕ 〈y〉 contains U as a hyperplane.

Replacing y by y − λx with λ = (y.y)/2 does not change g since for any
u ∈ U :

u.(y − λx) = u.y − λ u.x︸︷︷︸
=0 since
x∈rad(U)

= u.y.

But the replacement yields that y.y = 0 since

(y − λx).(y − λx) = (y.y)− 2λ (y.x)︸ ︷︷ ︸
=1 since
l(x)=1

+λ2 (x.x)︸ ︷︷ ︸
=0 since
x∈rad(U)

= (y.y)− 2(y.y)
2 = 0.

The same constructions works for U ′ := s (U), x′ = s(x) and g′ = g ◦ s−1

yielding y′ ∈ V ′ and U ′1 = U ′ ⊕ 〈y′〉. Now define s1 : U1 → U ′1 by

s1 : U ⊕ 〈y〉 → U ′ ⊕ 〈y′〉
(u, αy) 7→ (s(u), αy′).
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Now we claim that s1 is a metric isomorphism. s1 is indeed well-defined, linear,
injective and surjective by definition and we now check that it is metric. Let
u ∈ U and αy ∈ 〈y〉, then

Q′ (s1(u, αy)) = Q′ (s(u), αy′) 2.18= Q′
∣∣∣
U

(s(u)) + Q′
∣∣∣
〈y〉

(αy′)︸ ︷︷ ︸
=0 since y′.y′=0

= Q′(s(u)).

And since s is metric, Q′ ◦ s = Q implying that Q′ ◦ s1 = Q and finally that s1
is metric.

Theorem 2.38 (Witt). If (V,Q) and (V ′, Q′) are isomorphic and nondegener-
ate, every injective metric morphism

s : U ↪→ V ′

from a subspace U ⊆ V can be extended to a metric isomorphism of V onto V ′.

Proof. Since V and V ′ are isomorphic, we can without loss of generality assume
that V = V ′. If V is degenerate, we can apply proposition 2.37 to be finished or
to be left with a non-degenerate subspace U ⊆ V . We now argue by induction
on dim (U).

If dim (U) = 1, U is generated by a nonisotropic element x ∈ U . If y = s(x),
we have y.y = s(x).s(x) = x.x. Now one can choose ε = ±1 such that x+ εy is
nonisotropic too since otherwise we whould have:

0 = (x+ y).(x+ y) = x.x+ 2x.y + y.y = 2x.x+ 2x.y
0 = (x− y).(x− y) = x.x− 2x.y + y.y = 2x.x− 2x.y

⇒ 0 = 4x.x
⇒ 0 = x.x

Now define z = x + εy and let H = 〈z〉⊥. Now we have V = 〈z〉 ⊕̂H by
proposition 2.20(iii) since (U,Q) is nondegenerate. Now let σ : V → V be the
unique automorphism defined by σ

∣∣∣
H

= idH and σ (z) := −z. We have

σ(x− εy) = x− εy since x− εy ∈ H
σ(x+ εy) = −x− εy by definition

yielding

σ(2x) = σ(x− εy) + σ(x+ εy) = x− εy − x− εy = −2εy

and ultimately σ(x) = −εy, hence the automorphism −εσ extends s.
If dim (U) > 1, we decompose U in the form U1 ⊕̂U2 with U1, U2 6= {0}. By

induction hypothesis, the restriction s1 of s to U1 extends to an automorphism
σ1 of V . After replaceing s by σ−1

1 ◦s one can thus suppose that s is the identity
on U1. Then the morphism s carries U2 into the orthogonal complement V1 of
U1. Again by induction hypothesis, the restriction of s to U2 extends to an
automorphism σ2 of V1. Now define σ by σ

∣∣∣
U1

= idU1 and σ
∣∣∣
V1

= σ2 has the
desired property.
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Corollary 2.39. Two isomorphic subspaces of a nondegenerate quadratic mod-
ule have isomorphic orthogonal complements.

Proof. Let U,W ⊆ V be two isomorphic subspaces, by theorem 2.38 we can ex-
tend the isomorphism between them to an automorphism of the whole space and
restrict it to the orthogonal complement U⊥ yielding an isomorphism between
U⊥ and W⊥.

2.6 Application to quadratic form equivalence
Definition 2.40. Let f ∈ F [x1, . . . , xn] be a quadratic form with

f(x1, . . . , xn) =
n∑
i=1

aiix
2
i + 2

∑
i<j

aijxixj ∀i ≤ j ∈ [n] : aij ∈ F

then (Fn, f) is the quadratic module associated to f .

Proposition 2.41. Quadratic forms in the same number of variables are equiv-
alent if and only if the associated quadratic modules are isomorphic.

Proof. Let f, g ∈ F [x1, . . . , xn] and let A be the matrix associated to f and B be
the matrix associated to g with respect to some basis (for example the canonical
one) of Fn. An isomorphism of quadratic modules φ : (Fn, f)

∼=−→ (Fn, g) can
now be represented by a matrix P ∈ Gln (F) such that f ◦P = g which is exactly
the definition of form equivalence.

Remark 2.42. Let f, g ∈ F [x1, . . . , xn] be two quadratic forms with correspond-
ing matrices A and B. Saying f ∼ g amounts to saying that there exists
X ∈ Gln (F) with B = XAXT (by remark 2.11).

Definition 2.43. Let f ∈ F [x1, . . . , xn] and g ∈ F [x1, . . . , xm] be two quadratic
forms, then we define the orthogonal sum f ⊕̂ g ∈ F [x1, . . . , xn+m] by

(f ⊕̂ g) (x1, . . . , xn+m) := f(x1, . . . , xn) + g(xn+1, . . . , xn+m).

Correspondingly we write f 	̂ g := f ⊕̂ (−g).

Fact 2.44. The orthogonal sum of forms corresponds to the orthogonal sum of
quadratic spaces, i.e. ∀ f ∈ F [x1, . . . , xn] , g ∈ F [x1, . . . , xm]:(

Fn+m, f ⊕̂ g
) ∼= (Fn, f) ⊕̂ (Fm, g) .

Proof. Define the map ϕ : Fn ⊕ Fm → Fn+m component wise by

Fn 3 (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0) ∈ Fn+m

and

Fm 3 (x1, . . . , xm) 7→ (0, . . . , 0, x1, . . . , xm) ∈ Fn+m.

This map induces an isomorphism of vectorspaces which is also a metric mor-
phism by definition of f ⊕̂ g.
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Fact/Definition 2.45. A form f ∈ F [x, y] is called hyperbolic if and only if:

f ∼ xy ∼ x2 − y2.

This means that the quadratic space (F2, f) is a hyperbolic plane.

Proof. First note that xy and x2 − y2 are equivalent via

τ :
{
x 7→ x+y

2
y 7→ x−y

2
,

since

τ(x)2 − τ(y)2 =
(
x+ y

2

)2
−
(
x+ y

2

)2
= x2 + 2xy + y2

4 − x2 − 2xy + y2

4 = xy.

Let now f ∈ F [x, y] be hyperbolic. We now need to find a basis { v, w } of
isotropic vectors such that v.w 6= 0. Since f ∼ xy, there exists A ∈ Gln (F) such
that

f

(
A

(
x
y

))
= xy.

Now choose

v = A

(
1
0

)
and w = A

(
0
1

)
,

which is, since A is bijective, a basis of F2 and calculate

f(v) = f

(
A

(
1
0

))
= 0

f(w) = f

(
A

(
0
1

))
= 0

f(v + w) = f

(
A

(
1
1

))
= 1

yielding that

v.v = 1
2 (f(v + v)− f(v)− f(v)) = 1

2 (4f(v)− f(v)− f(v)) = 0

w.w = 1
2 (f(w + w)− f(w)− f(w)) = 1

2 (4f(w)− f(w)− f(w)) = 0

v.w = 1
2 (f(v + w)− f(v)− f(w)) = 1

2 6= 0.

This means that
(
F2, f

)
is a hyperbolic plane.

Definition 2.46. A form f ∈ F [x1, . . . , xn] represents an element a ∈ F if
there exists x ∈ Fn \ {0} with f(x) = a.

Remark 2.47. A form represents zero if and only if the corresponding quadratic
space contains a non-zero isotropic element.
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Proposition 2.48. If f represents 0 and is nondegenerate, one has f ∼ h+ g
where h is hyperbolic. Moreover, f represents all elements of F.

Proof. Basically this is the translation of proposition 2.27 and corollary 2.28
in the language of quadratic form equivalence: Since f represents zero, there
exists a non-zero isotropic element x. Then by proposition 2.27 there exists a
hyperbolic plane U ⊆ V containing x, which by remark 2.26 is nondegenreate.
This implies with proposition 2.20(iii) that F = U ⊕̂U⊥ where U is a hypberbolic
plane. By fact/definition 2.45, we now get that there is h that is hyperbolic.
Finally by corollary 2.28 we have that f (Fn) = F which means that every
element of F is represented.

Corollary 2.49. Let g ∈ F [x1, . . . , xn−1] be a nondegenerate quadratic form
and let a ∈ F∗, then the following properties are equivalent:

(i). g represents a.

(ii). ∃ h ∈ F [x1, . . . , xn−2] : g ∼ h ⊕̂ ax2
n.

(iii). g 	̂ ax2
n represents zero.

Proof.

(ii)⇒(i): and (ii)⇒(iii): Let h be as in the statement. Then t := (t1, . . . , tn−2, tn)
with ti = 0 for i ∈ [n− 2] and tn = 1 gives(

h ⊕̂ ax2
n

)
(t) = a.

Let τ be an invertible linear transformation on the variables that takes g
to h ⊕̂ ax2

n then we have

g (τ (t)) =
(
h ⊕̂ ax2

n

)
(t) = a.

And since τ is invertible and linear from t 6= 0 it follows that τ (t) 6= 0.
Hence g represents a. This immediately gives(

g 	̂ ax2
n

)
(τ (t) , 1) = a− a = 0.

(i)⇒(ii): Since g represents a, the quadratic space corresponding to g contains
an element x such that x.x = a. By proposition 2.20(ii) we then can write
Fn−1 = {x }⊥ ⊕̂ 〈x〉. Now let { b1, . . . , bn−2 } be a basis of {x }⊥ and
define the quadratic form h by

h(x1, . . . , xn−2) :=
n−2∑
i=1

bi.bixi + 2
∑
i<j

bi.bjxixj .

Fact 2.44 then implies the statement.

(iii)⇒(i): If the form f := g 	̂ ax2
n represents 0, there exists a non-trivial zero

(x1, . . . xn) of f . then either xn = 0, which implies that (x1, . . . , xn−1) is a
non-trivial zero of g and by proposition 2.48 we then get that g represents
a or xn 6= 0 in which case

0 = f (x1, . . . , xn)
x2
n

= f

(
x1

xn
, . . . ,

xn−1

xn
, 1
)

= g

(
x1

xn
, . . . ,

xn−1

xn

)
− a.
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Theorem 2.50 (Decomposition into Sums of squares). It holds that

∀ f ∈ F [x1, . . . , xn] =2 : ∃ a1, . . . , an ∈ F : f ∼
n∑
i=1

aix
2
i .

Proof. Theorem 2.32 together with fact 2.44 gives the statement.

Fact 2.51. Let f ∈ F [x1, . . . , xn] =2, by theorem 2.50 there exist a1, . . . , an ∈ F
such that f ∼

∑n
i=1 aix

2
i . The rank (f) defined in definition/proposition 2.12

coincides with the number

|{ i ∈ [n] | ai 6= 0 }| .

Two isomorphic quadratic modules (Fn, f) ∼= (Fn, g) are of the same rank.

Corollary 2.52. Let g and h be two nondegenerate forms of rank ≥ 1 and
f := g 	̂h. The following properties are equivalent:

(i). f represents zero.

(ii). ∃ a ∈ F∗ which is represented by g and by h.

(iii). ∃ a ∈ F∗ such that g 	̂ aZ2 and h 	̂ aZ2 represent zero.

Proof. (ii)⇔(iii): This follows from corollary 2.49.

(ii)⇒(i): Since f is defined as the difference of g and h it represents 0.

(i)⇒(ii): A nontrivial zero of f can be writen as (x, y) with f(x) = g(x) (by
definition of 	̂ ). If a = g(x) = h(y) is 6= 0, we are done. So let a = 0
which means that at least one of the forms g and h represents 0, thus by
proposition 2.48 all elements of F – in particular all non-zero values taken
by h.

Theorem 2.53 (Witt’s cancelation theorem). Let f = g ⊕̂h and f ′ = g′ ⊕̂h′
be two nondegenerate quadratic forms. If f ∼ f ′ and h ∼ h′, one has g ∼ g′.

Proof. Corollary 2.39 gives the statement.

Corollary 2.54. If f is nondegenerate, then there exist hyperbolic g1, . . . , gm
and h that does not represent zero with:

f ∼ g1 ⊕̂ . . . ⊕̂ gm ⊕̂h

and this decomposition is unique up to equivalence.

Proof. The existence follows from proposition 2.48 and uniqueness from theo-
rem 2.53.
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3 The algorithm
In the main algorithm Quadratic-Form-Equivalence presented in section 3.2
we will need to find rational solutions for so called “diagonal quadratic equa-
tions” which have the form:

n∑
i=0

aix
2
i = b where ai, b ∈ Q.

For this we’ll need some elementary number theory that will be presented in
section 3.1. Additionally many results from section 2 will then prove the cor-
rectness of the algorithm.

3.1 Quadratic diagonal equations
Notation 3.1 (Square decomposition). For a ∈ Z, denote by ã ∈ N>0 the
maximal number such that for some a ∈ Z we can write

a = ã2a.

Fact 3.2. For a ∈ Z, a is square-free.

Lemma 3.3. For all α = α1
α2
, β = β1

β2
, γ = γ1

γ2
∈ Q there exist square free a, b ∈ Z

such that

αx2 + βy2 = γ 6= 0 (3.1)

is solvable over rationals if and only if

ax2 + by2 = z2 (3.2)

is solvable over integers with pairwise coprime x, y, z.
In great detail we have with

A := α1β2γ2 B := α2β1γ2 C := α2β2γ1

that

a = A · C b = B · C

such that one can obtain a solution (x, y) =
(
u
w ,

v
w

)
∈ Q2 of eq. (3.1) from a

solution (x̂, ŷ, ẑ) ∈ Z3 of eq. (3.2) and vice versa by the following relations:

x = x̂CC̃

ẑÃ
y = ŷCC̃

ẑB̃

x̂ = Ã

C̃
u ŷ = B̃

C̃
v ẑ = Cw.

Proof. Equation (3.1) is solvable over rationals if and only if

Ax2 +By2 = C
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is solvable over rationals. The solvability of the last equation is equivalent to
the solvability of the following equation:

A

(
Ã

C̃
x

)2

+B

(
B̃

C̃
y

)2

= C. (3.3)

Hence with the substitution x̂ := Ã

C̃
x and ŷ := B̃

C̃
y we want to solve

Ax̂2 +Bŷ2 = C (3.4)

over rationals. Now we use homogenization to switch to integers: Having a
solution for eq. (3.4) means that there exists u, v, w ∈ Z with w 6= 0 such that

A
( u
w

)2
+B

( v
w

)2
= C

or, equivalently

Au2 +Bv2 = Cw2

multiplying by C 6= 0 yields

(C ·A)u2 + (C ·B)v2 = C
2
w2. (3.5)

Now eq. (3.5) has an integer solution with w 6= 0 if and only if

(C ·A)u2 + (C ·B)v2 = z2

has an integer solution with z 6= 0. Since C(au2 +βv2) = z2 we have that C | z2

and since C is square free C | z and therefore w2 = z2

C
2 ∈ Z.

Proposition 3.4. For x, y, z, d ∈ Z with x + y = z we have: If d divides two
elements of the set {x, y, z }, then d divides all three elements of {x, y, z }.
Proof. Without loss of generality assume that d | x and d | y Then there exist
elements u, v ∈ Z such that x = du and y = dv, hence we have:

z = du+ dv = d(u+ v) ⇒ d | z.

Proposition 3.5. If a prime divides a product of integrals, it divides at least
one of the factors.
Proof. Let p be a prime and a, b ∈ Z with p | ab. We want to prove:

p - a⇒ p | b.

Set g := gcd (a, p). Then of course g | p. Since p is prime, we have that g = 1
or g = p. If g = p, since g | a too, p | a which is a contradiction. So g = 1. By
the euclidean algorithm, there exist

x, y ∈ Z : px+ ay = 1.

Multiplying by b gives:

bpx+ bay = b.

Observe that p | pxb and p | aby (since it is assumed that p | ab). Therefore, by
proposition 3.4 it follows that p | b.
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Definition 3.6 (Norm of an element in a number field). Note that for a ∈ Q an
element of the number field Q (

√
a) can be written as α + β

√
a with α, β ∈ Q.

Now define the norm by

N : Q (
√
a) −→ Q

α+ β
√
a 7−→ α2 − aβ2.

The norm is a multiplicative function.

Fact 3.7. The norm is a multiplicative function.

Proof. Let α+ β
√
a, α′ + β′

√
a ∈ Q (

√
a) and calculate

N
(
α+ β

√
a
)
N
(
α′ + β′

√
a
)

=
(
α2 − aβ2) (α′2 − aβ′2)

= α2α′2 − aα2β′2 − aβ2α′2 + a2β2β′2

= α2α′2 + a2β2β′2 − a
(
α2β′2 + β2α′2

)
= α2α′2 − 2αα′ββ′a+ a2β2β′2

− a
(
α2β′2 − 2αβ′α′β + α′2β2)

= (αα′ + aββ′)2 − a (αβ′ + α′β)2

= N
(
αα′ + aββ′ + (αβ′ + α′β)

√
a
)

= N
((
α+ β

√
a
) (
α′ + β′

√
a
))

Lemma 3.8. Let a, b ∈ Z be square-free with |a| < |b| and 1 < |b|. Then there
exists b′ ∈ Z with |b′| < |b| such that

ax2 + by2 = z2 (3.6)

has a solution if and only if

ax2 + b′y2 = z2 (3.7)

has a solution and this solution can be converted into each other effectively.

Proof. If eq. (3.6) has a solution, then for any p | b we have that p cannot divide
x, since otherwise:

p | b and p | x ⇒ 0 ≡p ax2 + by2 = z2

⇒ p | z2

3.5⇒ p | z
⇒ p2 | z2, z2 = ax2 + by2

p|x⇒ p2 | by2

This means that ∃ n ∈ Z : np2 = by2. We furthermore know that p | b, meaning
that ∃ m ∈ Z : mp = b with the additional property that p - m since b is square
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free. Putting this together, we get

np2 = by2 = mpy2 ⇔ np = my2

⇒ p | my2

3.5⇒ p | m or p | y2

p-m⇒ p | y2

3.5⇒ p | y

which is a contradiction since x, y, z were assumed to be coprime. So p - x which
means that x ∈ F∗p is invertible and therefore we get

z2 = ax2 + by2 ≡p ax2 ⇔ z2 (x−1)2 ≡p a

i.e. a is a square modulo p. By the chinese remainder theorem a ∈ Z is a square.
Thus there is a t ∈ Z such that |t| ≤ |b|2 and a ≡b t2. Let b′ ∈ Z be such that

t2 = a+ bb′. (3.8)

We now claim that ax2 + by2 = z2 has a solution if and only if ax2 + b′y2 = z2

has a solution: If ax2 + by2 = z2 has a solution then

N

(
z + x

√
a

y

)
= z2

y2 − a
x2

y2

⇐⇒ y2N

(
z + x

√
a

y

)
= z2 − ax2

⇐⇒ ax2 + y2N

(
z + x

√
a

y

)
= z2

=⇒ N

(
z + x

√
a

y

)
= b.

Also from eq. (3.8) we get:

bb′ = t2 − a = N
(
t+
√
a
)

=⇒ b′ = N (t+
√
a)

b
= N (t+

√
a)

N
(
z+x
√
a

y

) fact 3.7= N

(
yt+ y

√
a

z + x
√
a

)
.

Which, by expanding the fraction by z − x
√
a i.e. rationalizing the denomi-

nator, effectively gives an integral solution of eq. (3.7). Since the argument is
symmetric in b and b′ we get a solution of eq. (3.6) from a solution of eq. (3.7).
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We are left to show that |b′| < |b|:

|a|+ |b′| = |a|+
∣∣∣∣ t2 − ab

∣∣∣∣
≤ |a|+

∣∣∣∣ t2b
∣∣∣∣+
∣∣∣a
b

∣∣∣
|a|<|b|
≤ |a|+

∣∣∣∣ t2b
∣∣∣∣+ 1

|t|≤ |b|2
≤ |a|+ |b|4 + 1

1<|b|
< |a|+ |b|

Corollary 3.9. Let a, b ∈ Z be square-free with |a| < |b| and 1 < |b|. Then to
determine if a solution of

ax2 + by2 = z2

exists and to calculate it, can be done effectivly.

Proof. Repeatedly apply lemma 3.8 to end up with one of the following equa-
tions:

±x2 ± y2 = z2 or ± x2 = z2.

Their solvability over Z is easy to check and they are solvable just as easy.
Since lemma 3.8 gives an effective way to convert solutions, the whole process
is effective too.

3.2 Rational quadratic forms
Theorem 3.10. A generalization of lemma 3.3 and corollary 3.9 for arbitrary
n ∈ N give an algorithm to effectively compute a solution for a diagonal quadratic
equation.

Fact 3.11. For any f ∈ F [x1, . . . , xn]=2, we can write

f(x1, . . . , xn) = (x1, . . . , xn)A(x1, . . . , xn)T

for a symmetric A ∈ Fn×n with entries aij ∈ F. Since A is a symmetric matrix
over a field of characteristic not equal to 2, we can apply Gaussian elimination
to optain C ∈ Gln (F) such that CACT is diagonal. Call the diagonal elements
bi ∈ F. Then we have

f((x1, . . . , xn)C) = (x1, . . . , xn)CACT (x1, . . . , xn)T =
n∑
i=1

bix
2
i .

This process makes theorem 2.50 explicit and effective.
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Fact 3.12. For f, g ∈ F [x]=2 with f(x) = ax2 and g(x) = bx2 we have that

f ∼ g ⇔ a

b
∈ F∗2.

This criterium can be checked in polynomial time for F = Q.

Proof. Being equivalent for this two forms means that there exists a number
λ ∈ F∗ such that g(λx) = f(x):

g(λx) = f(x)⇔ b(λx)2 = ax2 ⇔ bλ2x2 = ax2 ⇔ bλ2 = a⇔ λ2 = a

b
.

The last equation is solvable if and only if a
b is a square in F i.e. a

b ∈ F∗2. For
F = Q this is the case if and only if the nominator and denominator are squares
in Z. To check this one can simply perform a binary search which can be done in
linear time in the number of digits see the following Check-Perfect-Square-
Algorithm:

Algorithm 1 Check-Perfect-Square-Algorithm
Input: z ∈ Z.
Output: true if

√
z ∈ Z, false else.

1: if z < 0 then
2: return false
3: end if
4: set x := z DIV 2, S := {x }
5: while x2 6= z do
6: set x := (x+ (z DIV x)) DIV 2
7: if x ∈ S then
8: return false
9: end if

10: set S := S ∪ {x }
11: end while
12: return true

Now we come to the main algorithm that I want to present in this script.
It can decide the QuadraticFormEquivQ-Problem in exponential time and
can also be used to find such an equivalence. It is noteworthy that it can be
generalized for other fields too, for example F = Fq for a prime power q or
F ∈ {R,C }. Except for step 10 the algorithm boils down to linear algebra and
the results from the previous section. The algorithm for 10 in the case F = Q
is given above. For other fields consult the following references:

• F = Fq for a prime power q: by a classical theorem of Weil (see [Bac96])
for a random choice of x1, . . . , xn ∈ Fq there exists xn ∈ Fq solving the
equation.

• F ∈ {R,C }: One can just choose i such that ai 6= 0, set xi =
√
b/ai and

xj = 0 for j 6= i.
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Algorithm 2 Quadratic-Form-Equivalence
Input: f, g ∈ Q [x1, . . . , xn]=2.
Output: true if f ∼ g, false else.

1: By fact 3.11 assume f =
∑n
i=1 aix

2
i and g =

∑n
i=1 bix

2
i with ai, bi ∈ Q.

2: Without loss of generality set n = rank (f) and permute the variables such
that ai, bi ∈ Q∗ ∀i ∈ [n].

3: if rank (f) 6= rank (g) then
4: return false

/* fact 2.51 */
5: end if
6: if rank (f)=1 then
7: Write f(x) = ax2 and g(x) = bx2

8: return truth value of a
b ∈ Q∗2

/* fact 3.12 */
9: end if

10: Theorem 3.10 gives a solution α ∈ Qn of the diagonal quadratic equation
f(x1, . . . , xn) = bn.

11: The subspace U := 〈α〉⊥ is nondegenerate since bn 6= 0, which means by
proposition 2.20(ii) that we have

V = 〈α〉 ⊕̂U

So every v ∈ V can be written as v = λα+ u with λ ∈ Q and u ∈ U . Thus

f(v) = v.v = (λα+ u).(λα+ u) = λ2α.α+ u.u

= λ2f(α) + f(u) = λ2bn + f(u).

This simply means that f ∼ bnx
2
n ⊕̂ f1(x1, . . . , xn−1) for some quadratic

form f1 ∈ Q [x1, . . . , xn−1].
12: Now we have

f ∼ bnx2
n ⊕̂ f1(x1, . . . , xn−1)

g(x1, . . . , xn) = bnx
2
n ⊕̂

n−1∑
i=1

bix
2
i

Theorem 2.53 (Witt’s cancelation theorem) then says that:

bnx
2
n ⊕̂ f1(x1, . . . , xn−1) ∼ bnx

2
n ⊕̂

n−1∑
i=1

bix
2
i

⇐⇒ f1(x1, . . . , xn−1) ∼
n−1∑
i=1

bix
2
i

13: set f := f1, g :=
∑n−1
i=1 bix

2
i and goto 1.
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Theorem 3.13. We have that

QuadraticFormEquivQ ∈ EXP

and the equivalence can also be found in EXP.
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