
Quantum Algorithms
Topics in Complexity-Theory

Jesko Hüttenhain Lars Wallenborn

May 6th, 2011

Contents

1 The Quantum Fourier Transform 2
1.1 Circuit Implementation . 2
1.2 Quantum Integer Factoring . 5
1.3 The Hidden Subgroup Problem . 8

Abstract

This handout was created in the context of a talk we gave at the “Graduate Seminar
on Topics in Quantum Computation” by Prof. Nitin Saxena at the University of Bonn
in the Summer Semester 2011. It is heavily based on the lecture notes [AAR] and the
book [NC].

1

1 The Quantum Fourier Transform

Definition 1.1. We denote by ωN := exp
(
2πı̂
N

)
∈ C the canonical primitive N -th root

of unity in the complex plane.

Fact/Definition 1.2. Let N = 2n be a power of two. We define the gate QFTn on n
q-bits to be the unitary N ×N - matrix

QFTn :=

(
ωjkN√
N

)
0≤j,k<N

=
1√
N
·



1 1 1 · · · 1

1 ω1
N ω2

N · · · ω
(N−1)·1
N

1 ω2
N ω4

N · · · ω
(N−1)·2
N

...
...

...
. . .

...

1 ωN−1N ω
2(N−1)
N · · · ω

(N−1)2
N

 .

Proof. To show that QFTn is unitary, we only need to verify that its columns are or-
thonormal. To do so, we will show that

N−1∑
k=0

ωkjN ω
−hk
N =

{
N ; j = h
0 ; otherwise

(1.1)

It is noteworthy that ωxN = ω−xN , so the above is actually the scalar product in CN . Now,

ωj−hN is a root of the polynomial F (X) := XN − 1. We know that F (1) = 0 and set

G := F/(X − 1) =
∑N−1

k=0 X
k.

Hence, we are either in the trivial case j = h ⇔ ωj−hN = 1 or, otherwise, G(ωj−hN) = 0
and this is precisely (1.1).

1.1 Circuit Implementation

Notation 1.3. We will associate the states |x〉 = |x1, . . . xn〉, where the xi ∈ {0, 1}
are the binary digits in the representation x =

∑n
j=1 xj2

n−j. Furthermore, we use the

notation [0.x1 . . . xn] to denote the binary fraction
∑n

j=1 xj2
−j. For ease of notation,

let
λj (x) := exp (2πı̂ · [0.xj · · ·xn]) .

Proposition 1.4. The map

|x〉 7−→ 1√
N
·
n−1⊗
j=0

(
|0〉+ λn−j (x) |1〉

)
is the quantum fourier transform.

2

Proof. We calculate

√
N · |x1, . . . , xn〉 7→

N−1∑
k=0

exp

(
2πı̂xk

N

)
|k〉

=
∑

k1∈{0,1}

· · ·
∑

kn∈{0,1}

exp

(
2πı̂x

∑n
j=1 kj2

n−j

2n

)
|k1, . . . , kn〉

=
∑

k1∈{0,1}

· · ·
∑

kn∈{0,1}

exp
(

2πı̂x
∑n

j=1 kj2
−j
)
|k1, . . . , kn〉

=
∑

k1∈{0,1}

· · ·
∑

kn∈{0,1}

⊗n

j=1
exp

(
2πı̂xkj2

−j) |kj〉
=

n⊗
j=1

 ∑
kj∈{0,1}

exp
(
2πı̂xkj2

−j) |kj〉


=
n⊗
j=1

[
|0〉+ exp

(
2πı̂x2−j

)
|1〉
]

=

n−1⊗
j=0

[
|0〉+ exp

(
πı̂ · x

2j

)
|1〉
]

=

n−1⊗
j=0

(|0〉+ exp(2πı̂[0.xn−j · · ·xn]) |1〉)

Definition 1.5. We denote the k-rotation gate by

Rk =

(
1 0

0 exp
(
2πı̂
2k

)) .
Notation 1.6. For any unitary matrix A ∈ C2×2, we will use the diagram notation

•

A

to denote the controlled A-gate, which corresponds to the unitary matrix(
I 0
0 A

)
,

where I ∈ C2×2 is the unit matrix.

Theorem 1.7. The circuit in Figure 1 computes the quantum fourier transform, up to
reordering of the quantum bits.

3

|x1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉+λ1(x)|1〉

|x2〉 • · · · H R2 · · · Rn−1 · · · |0〉+λ2(x)|1〉

|x3〉 · · · • · · · · · · |0〉+λ3(x)|1〉

...
...

|xn−1〉 · · · • · · · · · · H R2 |0〉+λn−1(x)|1〉

|xn〉 · · · • · · · • · · · • R1 |0〉+λn(x)|1〉

Figure 1: The Quantum Fourier Circuit Implementation

Proof. Let |x1 . . . xn〉 be the input of the circuit. Applying Hadamard to the first bit
yields the state

1√
2

(
|0〉+ exp (2πı̂ · [0.x1]) |1〉

)
|x2 . . . xn〉

since exp (2πı̂ · [0.x1]) = (−1)x1 . Applying the controlled R2-gate turns this into

1√
2

(
|0〉+ exp (2πı̂ · [0.x1x2]) |1〉

)
|x2 . . . xn〉

and consequently, the controlled gates R3, R4, . . ., Rn−1 and Rn leave us with

1√
2

(
|0〉+ λ1 (x) |1〉

)
|x2 . . . xn〉 .

We perform an equivalent method on the second qubit: After the Hadamard gate, the
state is equal to

1
√

2
2

(
|0〉+ λ1 (x) |1〉

)(
|0〉+ exp (2πı̂ · [0.x2]) |1〉

)
|x3 . . . xn〉 .

Then the controlled gates R2 to Rn−1 yield the state

1
√

2
2

(
|0〉+ λ1 (x) |1〉

)(
|0〉+ λ2 (x) |1〉

)
|x3 . . . xn〉 .

This procedure for every qubit produces the final state

1√
2
n

(
|0〉+ λ1 (x) |1〉

)(
|0〉+ λ2 (x) |1〉

)
· · ·
(
|0〉+ λn (x) |1〉

)
.

By 1.4, this is the quantum fourier transform with all qubits in reverse order.

4

Corollary 1.8. The quantum fourier transform can be implemented by using only poly-
nomially many circuits.

Proof. In Figure 1 we apply exactly one Hadamard and n − i − 1 conditional rotation
gates to the i-th qubit. So the total number of gates is

n∑
i=1

(
1 + (n− i− 1)

)
=
n(n+ 1)

2
.

Fact 1.9. To swap two qubits, one may apply the quantum circuit

|a〉 • ⊕ • |b〉

|b〉 ⊕ • ⊕ |a〉

Proof. We compute the composition of the three CNOT gates:

|ab〉 7−→ |a〉 ⊗ |a⊕ b〉
7−→ |a⊕ (a⊕ b)〉 ⊗ |a⊕ b〉 = |b〉 ⊗ |a⊕ b〉
7−→ |b〉 ⊗ |(a⊕ b)⊕ b〉 = |ba〉 .

1.2 Quantum Integer Factoring

We now plan to solve the following well-known problem efficiently on a quantum com-
puter. Note that there is no classical algorithm known that factors large integers in
polynomial time.

Integer Factoring Problem
Instance: An integer number N ∈ Z.
Task: Find a nontrivial factor of N .

Definition 1.10. For any positive integer number N ∈ Z+, we define the residue class
ring ZN := Z/(N) . Its multiplicative subgroup Z×N can be written as

Z×N = { k ≤ N | gcd(k,N) = 1 } .

The Euler phi function is defined as φ(N) := #Z×N . We write ord(x) for the order
of x ∈ Z×N , i.e. the smallest positive integer number such that xord(x) = 1. For k ∈ Z,
we define

ordN (k) :=

{
ord(k mod N) ; gcd(k,N) = 1
0 ; otherwise

Note that when N is a prime, ZN =: FN is a field and F×N = FN \ {0}.

5

Fact 1.11. For any odd prime p,

Pr
x∈RF×

p

(ordp(x) ∈ 2Z) ≥ 1

2
.

Proof. It is well-known that F×p is a cyclic group of order p− 1. Hence, xp−1 = 1 for all
x ∈ F×p . Let now g be a generator. This means that for every x ∈ F×p , there exists some

k ∈ N such that x = gk. For x ∈R F×p , the probability of k being odd is precisely one
half. We therefore assume that k is odd and prove that x has even order. Write

1 = xord(x) = gk·ord(x)

so we know that p− 1 | k · ord(x). Since k is odd and p− 1 is even, we are done.

Fact 1.12. Let N = pq for two odd primes p and q. Then,

Pr
x∈RZ×

N

(
ord(x) ∈ 2Z and x

ord(x)
2 6= ±1

)
≥ 3

8
.

Proof. We will make use of the isomorphism Z×N ∼= Z×p × Z×q , which is essentially the
Chinese remainder theorem. Choosing an element x = (a, b) at random means indepen-
dently choosing an element a ∈R Z×p and an element b ∈R Z×q . Obviously

ord(x) = lcm(ord(a), ord(b)),

so by 1.11, the probability for x to be of even order is greater or equal than 3
4 .

Let us therefore assume that x = y2 is of even order. We have to show that the
probability of y 6= ±1 is at least 1

2 . Now, the equation y2 = 1 has precisely two solutions
(namely, 1 and −1) in both Fp and Fq. Hence, it has the four solutions

(1, 1) (−1,−1) (−1, 1) (1,−1)

in ZN ∼= Fp × Fq, the latter two of which are not 1 or −1.

Corollary 1.13. Let N = pq for two odd prime numbers p and q. With probability at
least 3

8 , an element x ∈R Z×N has even order ord(x) = 2r and both gcd(N, xr + 1) and
gcd(N, xr − 1) are nontrivial factors of N .

Proof. Choosing an element x ∈R Z×N such that ord(x) = 2r and xr 6= ±1 gives us the
equality

0 = x2r − 1 = (xr − 1) · (xr + 1)

and since neither (xr − 1) nor (xr + 1) are equal to zero in ZN , this means that they
represent nontrivial factors of N .

6

Hence, we have reduced the Integer Factoring Problem to the

Period Finding Problem
Instance: A periodic function f : Z→ Ω.
Task: Find the period of f . This is the smallest s ∈ Z+ such that f(x+ s) =

f(x) for all x ∈ Z.

A quantum algorithm to solve this problem probabilistically is given below:

Algorithm 1 Period-Finding-Quantum-Subroutine

Input: 2 registers of n-qubits in state |0〉 |0〉 and a black-box Bf that computes a func-
tion f : Z2n → Z2n with period s.

Output: A quantum state |k〉 |f(r)〉
1: let N := 2n and L :=

⌊
N
s

⌋
where s = ordM (x).

2: Apply Hadamard to register 1:

1√
N
·
N−1∑
j=0

|j〉 |0〉

3: Apply Bf :

1√
N
·
N−1∑
j=0

|j〉 |f(j)〉

4: Measure register 2. For the minimal r:

1√
L
·
L−1∑
j=0

|r + js〉 |f(r)〉

5: Apply QFTn to register 1:

1√
NL
·
L−1∑
j=0

N−1∑
k=0

ω
(r+js)k
N |k〉 |f(r)〉

6: return |k〉 |f(r)〉 by measuring register 1.

We make use of the following statement, which involves several tedious calculations:

Fact 1.14. Let M ∈ Z be any number and n minimal such that 2n ≥ M2. Choose any
x ∈ Z×M and let |k〉 |xr mod M〉 be the quantum state returned by a call to the Period-
Finding-Quantum-Subroutine with black-box f(r) := xr mod M . Then, with high
probability, ωksN ≈ 1 where s = ord(x) is the period of f .

7

Handwaving. Note that the quantum state |k〉 |f(r)〉 occurs with probability∣∣∣∣∣∣
L−1∑
j=0

ω
(r+js)k
N

∣∣∣∣∣∣
2

=
∣∣∣ωrkN ∣∣∣2 ·

∣∣∣∣∣∣
L−1∑
j=0

ωjskN

∣∣∣∣∣∣
2

We claim that
∣∣∣∑j ω

jsk
N

∣∣∣2 is very large when ωskN ≈ 1 and very small otherwise. This is

morally correct because if ωskN forms a large angle with the real axis, summing up over
its periodic rotations will cancel out the amplitudes. If the angle is very small, on the
other hand, they add up.

Corollary 1.15. There exists a polynomial time quantum algorithm to solve the Pe-
riod Finding Problem.

Proof. Since ωksN ≈ 1 = ωNN , we can estimate a multiple of the period s by N/k .
Sampling a couple of more times and taking the greates common divisor of the multiples
obtained will reveal the value of s.

1.3 The Hidden Subgroup Problem

Definition 1.16. Let G be a group and f : G → Ω any map of sets. We say that f
conceals H if H ⊂ G is a subgroup of G and f(x) = f(y) if and only if there exists a
h ∈ H with x = hy. In other words, f is constant on any left-coset of H.

Hidden Subgroup Problem (HSPG)

Parameters: A group G.
Instance: A map f : G→ Ω concealing H ⊂ G.
Task: Find a set of generators of H.

Example 1.17. Note that the Period Finding Problem is a special case of the Hid-
den Subgroup Problem over G = Z. Take H = (s), the subgroup generated by the
period of some function f : Z → Ω. Then, f conceals precisely H and finding a set of
generators of H is equivalent to finding s. Consequently, Integer Factoring reduces
to Hidden Subgroup.

In fact, the following result is known:

Theorem 1.18 (Shor,Kitaev). For a finite abelian group G, HSPG ∈ BQP. �

Remark 1.19. For noncommutative groups G, it is still an open problem whether HSPG
is in BQP or not.

8

We end with the reduction of another well-known computational problem to HSP:

Graph Isomorphism Problem (GI)

Instance: Two undirected graphs G1 and G2.
Task: Decide whether G1

∼= G2.

Definition 1.20. Recall that the automorphisms of a graph G = (V,E) are given by all
permutations of its vertices that induce a permutation of its edges, i.e.

Aut(G) = {π : V → V | ∀{v, w} ∈ E : {π(v), π(w)} ∈ E } .

Furthermore, we denote by Gn := {G | #V (G) = n } the set of all graphs on n vertices.

Theorem 1.21. GI ≤T HSPSn.

Proof. We may assume without loss of generality that the instance (G1, G2) of GI is
such that the Gi are both connected graphs. We set G := G1 ·∪G2 and consider Aut(G)
as a subgroup of Sn, where n = #V (G). For any π ∈ Sn and H ∈ Gn, we define

π(H) := (V, { {π(v), π(w)} | {v, w} ∈ E(H) }).

Note that π(H) = H if and only if π ∈ Aut(H), but always π(H) ∼= H. This is one of
the rare cases where this subtle distinction needs to be sought through with great care.

Now, we define f : Sn → Gn by f(π) := π(G) and claim that f conceals Aut(G). Once
we have shown this, we are done since G1 6∼= G2 if and only if each generator of Aut(G)
operates independently on each of the Gi.

Hence, let π, σ ∈ Sn and ρ ∈ Aut(G) ⊆ Sn. Then, π = σρ if and only if

f(π) = π(G)
!

= σ(ρ(G)) = σ(G) = f(σ).

References

[AAR] Scott Aaronson, Lecture notes “Quantum Compexity Theory”, Electronic Ver-
sion1 from 05/06/2011.

[NC] Michael A. Nielsen, Isaac L. Chuang, “Quantum Computation and Quantum In-
formation”, Cambridge University Press, 2000

1http://stellar.mit.edu/S/course/6/fa08/6.896/materials.html

9

http://stellar.mit.edu/S/course/6/fa08/6.896/materials.html

	The Quantum Fourier Transform
	Circuit Implementation
	Quantum Integer Factoring
	The Hidden Subgroup Problem

